رخساره هاوعناصر ساختاری رودخانه زاینده رود در منطقه ورزنه(قورتان- ورزنه)

نویسندگان

1 ، استادیار، گروه زمین شناسی دانشگاه اصفهان

2 دانش آموخته، دانشگاه آزاد اسلامی واحد خوراسگان

چکیده

 
نهشته های آبرفتی حاشیه رودخانه زاینده رود با ضخامت 3-4 متر در محدوده قورتان – ورزنه،را نهشته های به طرف بالا ریز شونده گراولی، ماسه ای و گلی تشکیل می دهند.این نهشته ها شامل ده رخساره رسوبی گراول ماتریکس پشتیبان (Gmm)، گراول دانه پشتیبان (Gcm,Gci)، گراول دانه پشتیبان با لایه بندی افقی (Gh)، گراول با لایه بندی مسطح (Gp)، گراول با لایه بندی عدسی (Gt)، ماسه با لایه بندی عدسی (St ) ماسه با لایه بندی مورب مسطح (Sp )، گل توده ای قرمز (Fm) و گل لامینه ایی با میان لایه های ماسه ایی (Fl)است.
هشت عنصر ساختاری کانال (CH)، نهشته های جریانی گراویته ای (SG)، خاکریز (LV)، کروس های پهن یا کانال های متروکه CS, FF(CH)))،اشکال بستر ماسه ای (SB)، صفحات ماسه ایی لامینه ای (LS)  و رسوبات رشدی جانبی (LA) در بر گیرنده این رخساره ها هستند.
رخساره ها و ساختارهای رسوبی اکثراًدر یک سیستم رودخانه ای ماندری در شرایط آب و هوای خشک تا نیمه خشک
 ته نشین شده اند. وجود نهشته های مخروط افکنه در بخش پایینی توالی رسوبی بیانگر فعالیت رسوبگذاری دو فرآیند رسوبگذاری رودخانه ای-مخروط افکنه ای در این منطقه است.
 
 

عنوان مقاله [English]

Facies and architectural elements of Zayandeh-Rud river bank (Ghortan - Varzaneh)

نویسندگان [English]

  • H.R Pakzad 1
  • M.H Morovat 2
1 Assistant Professor, Depatment of Geology University of Isfahan
2 M.Sc. Islamic Azad University, Khorasgan Branch
چکیده [English]

Alluvial deposits of Zayandeh Rud river bank, between Ghortan and Varzaneh area, consist of 3-4 mfining upward of gravelly, sandy and muddy sediments.They include 10 lithofacies of  matrix supported gravel)Gmm), clast supported gravel(Gcm, Gci), horizontally stratification gravel(Gh), planar cross bedded gravel(Gp), trough cross bedded gravel (Gt), trough cross bedded sand (St),  planar cross bedded sand (Sp), massive mud(Fm), intermittent sand and mud(Fl).All lithofacies have formed in 8 architectural elements of channel (CH), gravity flow deposits (SG), levee (LV), crevasse splay (abandoned channel) (CS, FF (CH)), sandy bed forms (SB), laminated sand sheet (LS) and lateral accretion (LA).The facies and architecture elements are mostly developed in a meandering river system in arid to semi arid climate. Deposition of debris flow sediments in lower part of succession suggest both sedimentation activity of alluvial and fluvial systems in the study area.  
 
 

کلیدواژه‌ها [English]

  • Gravelly Deposits
  • Sandy Deposits
  • facies
  • Architectural Elements

 

1-              پاکزاد، ح. و ع، امینی، (1388)،رخساره ها و فرآیندهای رسوبگذاری نهشته های مخروط افکنه ای بخش پایینی حوضه رودخانه زاینده رود: مجله پژوهش های چینه نگاری و رسوب شناسی دانشگاه اصفهان، شماره36.

2-              سازمان جغرافیایی نیروهای مسلح، (1379 )،  نقشه محدوده شهری اصفهان، مقیاس 1:150000،1برگه.

3-                Alavi, M., 1994, Tectonics of the Zagros orogenic belt of Iran: new data and interpretations: Tectonophysics, v. 229, p. 211-238.

4-                Blair, T.C., 1999, Sedimentary processes and facies of the waterlaid Anvil Spring Canyon alluvial fan, Death Vally, California: Sedimentology v. 46, p. 913-940.

5-                Blair, T.C., and J.G. McPherson, 1999, Alluvial fan: fluvial or not? Keynote address, 5th international conference on fluvial sedimentology, Brisbane, Australia, July 1993, Keynote addresses and abstracts. K33-K41.

6-                Bridge, J.S., 1985, Paleochannel patterns inferred from alluvial deposits: a critical evaluation. Journal Sedimentology Petrology, v. 55, p. 579-589.

7-                Collinson, J.D. 1996, Alluvial Sediments. In: Reading, H.G. (Ed.), Sedimentary Environments and Facies. 3rd Ed., Blackwell, Oxford, p. 37-82.

8-                Folk, R.L., 1974, Petrology of Sedimentary Rocks. Hemphill, Austin.

9-                Ghazi, S., and N.P. Mounty, 2009, Facies and architecture element analysis of a meandering fluvial succession: The Permian Wwarchha Sandstone, Salt Range, Pakistan: Sedimentology, v.  221, p. 99-126.

10-           Gao, C., 2004, Sedimentary facies changes and climate-tectonic control in a foreland basin, the Urumqui River, Tian Shan, northwestChina: Sedimentary Geology, v. 169, p.  29–46.

11-           Harms, J.C., M.J., Southard, D.R., Spearing, and R.G. Walker, 1982, Structure and sequences in clastic rocks. Soc. Econ. Paleontol. Mineral. Short course No.9, 161 Calgary.

12-           Hjellbakk, A., 1997, Facies and fluvial architecture of a high energy braided river: the Upper Proteozoic Seglodden Member, Varanger Peninsula, northern Norway.

13-           Lee, H.S., and S.K., Chough 2006, Refined lithostratigraphy and depositional environments of the Pyeongan Supergroup (Carboniferous- Permian) in the Taebaek area, mideast Korea: Journal of Asian Earth Science, v. 26, p. 339−352.

14-           Miall, A.D., 1985, Architectural- element analysis: a new method of facies analysis applied to fluvial deposits: Earth Science Reviews, v. 22, p. 261-308.

15-           Miall, A.D., 1992, Alluvial deposits. In: Walker, R.G., & James, N.P., (ٍEds.): Facies Models: Response to Sea Level Change: Geological Association of Canada, Toronto, p. 119-142.

16-           Miall, A.D., 2006, The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology, Spriger.

17-           Nicols, G., 2009, Sedimentology and stratigraphy, 2nd Edition, Wilely-Blackwell.

18-            Pakzad, H. and R. Ajalloeian, 2004, Geochemistry of the Gavkhoni playa lake brine: Carbonates and Evaporates, v. 19, p. 67-74.

19-           Pierson, T.C., 1980, Erosion and deposition by debris flows at Mt. Thomas, New Zealand: Earth Surface Proc, v. 5, p. 1952-2984.

20-           Reineck, H.E., I.B. Singh 1980, Depositional Sedimentary Environments, 2nd Edition, Springer-Verlag, Berlin.

21-           Rhee, C.W., Jo, H.R., and S.K., Choung 1998, An allostratigraphic approach to a non-marine basin: the north-western part of Cretaceous Kyongsang Basin, SE Korea: Sedimentology, v. 45, p. 449-472.