ژئوشیمی و پتروگرافی سازند گرو (نئوکومین-آپسین) در برش نمونه (کبیرکوه، استان ایلام)

نویسندگان

1 دانشجوی دکتری، گروه زمین شناسی دانشگاه شهید بهشتی

2 استاد، گروه زمین شناسی دانشگاه شهید بهشتی

3 استادیار، گروه زمین شناسی دانشگاه شهید بهشتی

4 دانشیار، گروه زمین شناسی دانشگاه شهید بهشتی

چکیده

 
 به منظور تعیین انواع کمربندهای رخساره‌ای، محیط رسوبی، ترکیب کانی‌شناسی اولیه، دمای قدیمه و محیط دیاژنزی سازند گرو، 624 متر از این سازند در برش نمونه (واقع در یال جنوب غربی کبیرکوه) متعلق به نئوکومین-آپسین مورد مطالعات ژئوشیمی و پتروگرافی قرار گرفته است. در این برش مرز زیرین سازند گرو رخنمون ندارد ولی در چاه شماره 1 کبیرکوه، مرز زیرین این سازند با سازند تبخیری گوتنیا گزارش شده است. بر روی این سازند آهک‌های سازند سروک به سن آلبین-تورونین قرار می‌گیرند. اعتقاد بر این است که سازند گرو به عنوان سنگ منشاء در حوضه زاگرس عمل کرده است.
مطالعات رخساره‌ای منجر به شناسایی کمربند رخساره‌ای بخش‌عمیق دریا در این سازند شد. عدم وجود رخساره‌های چارچوب‌ساز، حضور رخساره‌های پلوئیدی و نبود رخساره‌های دوباره نهشته شده تائیدکننده ته‌نشست این توالی کربناته بر روی پلاتفرم کربناته از نوع رمپ می‌باشد.
نتایج حاصل از بررسی عناصر اصلی، فرعی و ایزوتوپهای پایدار اکسیژن 18 و کربن 13 و رفتار آنها نسبت به یکدیگر ترکیب کانی‌شناسی اولیة آراگونیتی را نشان می‌دهد. مطالعات ژئوشیمیایی (ترسیم مقادیر ایزوتوپ اکسیژن 18 در برابر منگنز و نسبت Sr/Ca در برابر منگنز) حاکی از این است که سنگ‌آهکهای منطقه تحت‌تاثیر دیاژنز در یک سامانه دیاژنزی باز قرار داشته‌اند. دمای محاسبه شده بر اساس سنگین‌ترین ایزوتوپ اکسیژن در نمونه‌های میکریتی سازند گرو 2/29 درجة سانتی‌گراد است.
 

کلیدواژه‌ها


عنوان مقاله [English]

Geochemistry and petrography of Garau Formation with Neocomian-Aptian age in type section (Kabir Kuh, Ilam province)

نویسندگان [English]

  • M., Jamalian 1
  • M.H Adabi 2
  • Mir R Moussavi 3
  • A Sadeghi 4
1 Ph.D student, Department of Geology, Shahid Beheshti University
2 Professor, Department of Geology, Shahid Beheshti University
3 Assistant Professor, Department of Geology, Shahid Beheshti University
4 Associate Professor, Department of Geology, Shahid Beheshti University
چکیده [English]

 In order to understand facies belts, depositional environment, original carbonate mineralogy, paleotemperature and diagenetic environment, 624 m of the Garau Formation (Neocomian-Aptian) in type section (SW flank of Kabirkuh Anticline, in Lurestan province) was investigated by petrographic and geochemical analyses. Lower boundary of this formation is not exposed in the type section, but it overlies the Gotnia Formation in well no. 1 of Kabir Kuh and overlain by the Sarvak Formation. It is believed that the Garau Formation is a source rock in  the Zagros Basin. Facies studies led to the recognition of deep marine facies belt. Absence of turbidite deposits and reefal facies and existence of peloid facies indicate that the Garau Formation was deposited in a carbonate ramp environment. Major and minor elements and carbon and oxygen isotope values were used to determine the original carbonate mineralogy of the Garau Formation. Elemental evidences (such as high Sr value) and oxygen and carbon isotope values indicate that aragonite was the original carbonate mineralogy of this formation. Major and minor elements and carbon and oxygen isotope values (variations of Sr/Ca and 18O values versus Mn) suggest that diagenetic alteration occurred in an open diagenetic system. Temperature calculation based on the oxygen isotope value of the least-altered samples, using Anderson and Arthur (1983) equation, indicates that paleotemperature was 29.2° C.
 

کلیدواژه‌ها [English]

  • Geochemistry
  • Petrography
  • Carbonate ramp environment
  • Garau Formation
  • Zagros

 

1- اشکان، م.ع.، 1383، اصول مطالعات ژئوشیمیایی سنگ‌های منشاء هیدروکربوری و نفت‌ها با نگرش ویژه به حوضة رسوبی زاگرس، روابط عمومی شرکت ملی نفت ایران، 355 ص.

2- حسین‌پور، م.، 1386، بررسی میکروفاسیس‌ها و محیط رسوبی سازند گرو در کبیرکوه ایلام، جنوب غرب ایران: رساله کارشناسی ارشد، دانشگاه بوعلی همدان، 79 ص.

3- صالحی، م.ع.، 1386، ژئوشیمی، دیاژنز و محیط رسوبی سازند فهلیان در مقطع نمونه واقع در تاقدیس فهلیان (شمال غرب شهرستان نورآباد ممسنی) و مقایسه آن با چاه گچساران 55 در میدان نفتی گچساران (جنوب شهرستان گچساران): رساله کارشناسی ارشد، دانشگاه شهید بهشتی، 163 ص.

4- مطیعی، ه.، 1382، زمین‌شناسی ایران (چینه شناسی زاگرس)، طرح تدوین کتاب زمین شناسی ایران، انتشارات سازمان زمین شناسی و اکتشافات معدنی کشور، چاپ دوم، 583 ص.

5-Adabi, M.H., 1996, Sedimentology and geochemistry of Upper Jurassic (Iran) and Precambrian (Tasmania) carbonates: Unpublished Ph.D. thesis, University of Tasmania, Australia, 407 p.

6- Adabi, M.H., and E. Asadi Mehmandosti, 2008, Microfacies and geochemistry of the Ilam Formation in the Tang-E Rashid area, Izeh, S.W. Iran: Journal of Asian Earth Sciences, v. 33, p. 267-277.

7- Adabi, M.H., and C.P. Rao, 1991, Petrographic and geochemical evidence for original aragonitic mineralogy of Upper Jurassic carbonates (Mozduran Formation), Sarakhs area, Iran: Sedimentary Geology, v. 72, p. 253­-267.

8- Adabi, M.H., M.A. Salehi, and A. Ghabeishavi, 2010, Depositional environment, sequence stratigraphy and geochemistry of Lower Cretaceous carbonates (Fahliyan Formation), south-west Iran: Journal of Asian Earth Sciences, v. 39, p. 148-160.

9- Ala, M.A., R.R.F. Kinghorn, and M. Rahman, 1980, Organic geochemistry and source rock characteristics of the Zagros petroleum province, Southwest Iran. Journal of Petroleum Geology, v. 3, p. 61-89.

10- Alavi, M., 2007, Structures of the Zagros fold-thrust belt in Iran: American Journal of Science, v. 307, p. 1064-1095, DOI: 10.2475/09.2007.02

11- Alsharhan, A.S., and A.E.M. Narin, 1997, Sedimentary Basins and Petroleum of Middle East: Elsevier, 843 p.

12- Anderson, T.F., and M.A. Arthur, 1983, Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. In: Arthur, M.A., T.F. Anderson, I.R. Kaplan, J. Veizer, and L.S. Land, (Eds.): Stable Isotopes in Sedimentary Geology: Society of Economic Paleontology and Mineralogy, Short Course. v. 10, p. 1-15.

13- Bordenave, M.L., and R., Burwood, 1990, Source rock distribution and maturation in the Zagros Orogenic Belt: Provenance of Asmari and Bangestan reservoir oil accumulations, Organic Geochemistry. v. 16, p. 369-387.

14- Bordenave, M.L., and A.Y., Huc, 1995, The Cretaceous source rock in the Zagros Foothills of Iran:  Reve De Institut Francais Du Petrole, v. 50, p. 727-754.

15- Brand, U., and J. Veizer, 1980, Chemical diagenesis of a multicomponent carbonate system – 1: trace elements: Journal of Sedimentary Petrology, v. 50, p. 1219–1236.

16- Casey, R.E.P., 1977, The ecology and distribution of recent radiolarian: In Ramsey, A.T.S., (Eds.) Oceanic Micropaleontology, Academic  Press, London, v. 2, p. 809-845.

17- Dunham, R.J., 1962, Classifcation of carbonate rocks according to depositional texture: American Association of Petroleum Geologists, Mem 1: p. 108–121.

18- Falcon, N.L., 1961, Major earth – flexuring in the Zagros mountain of Southwest Iran: Q. J. London, Geological Society Special Publication, v. 117, Prt, 4, No. 468, p. 367-376.

19- Flugel, E., 2004, Microfacies of Carbonate Rocks: Springer-Verlag, Berlin, Heidelberg, 976 p.

20- Grocke, D.R., G.D. Price, A.H. Rufell, J. Mutterlose, and E. Baraboshkin, 2003, Isotopic evidence for Late Jurassic-Early Cretaceous climate change: Palaeogeography Palaeoclimatology Palaeoecology, v. 202, p. 97-118.

21- Haas, J., and E. Tardy-Filacz, 2004, Facies changes in the Triassic-Jurassic boundary interval in an intraplatform basin succession at Csovar (Transdanubian Range, Hungary): Sedimentary Geology, v. 168, p. 19-48.

22- Hamon, Y., and G. Merzeraud, 2007, C and O isotope stratigraphy in shallow marine carbonate: a tool for sequence stratigraphy (example from the Lodeve region, peritethian domain): Swiss Journal Geoscience, v. 100, p. 71-84.

23- Hulstrand, R.F., 1965, Stratigraphical column, No. 20304-37, Garau Formation type section, NIOC.

24- James, G.A., and J.G. Wynd, 1965, Stratigraphic nomenclature of Iranian oil consortium agreement area: The American Association of Petroleum Geologists Bulletin, v. 49, p. 2182-2245.

25- Kelth, L.M., and J.N. Weber, 1964, Carbon and oxygen isotopic composition of limestones and fossils: Geochimica et Cosmochimica Acta, v. 28, p. 1787-1816.

26- Land, L.S., and G.K. Hoops, 1973, Sodium in carbonate sediments and rocks: a possible index to the salinity of diagenetic solutions: Journal of Sedimentary Petrology, v. 43, p. 614–617.

27- Marfil, R., M.A. Caja, M. Tsige, I.S. Al-Asam, T. Martin-Crespo, and R. Salas, 2005, Carbonate-cemented stylolites and fractures in the Upper Jurassic limestone of the Eastern Iberian Range, Spain: A recorder of palaeofluids composition and thermal history: Sedimentary Geology, v. 178, p. 237-257.

28- Milliman, J.D., 1974, Marine Carbonates Recent Sedimentary Carbonates, Part 1. Speringer-Verlag, Berlin, 375 p.

29- Morse, J.W., and F.T. Mackenzie, 1990, Geochemistry of Sedimentary Carbonates: Development in Sedimentology, Amsterdam (Elsevier), 48: 707 p.

30- Mucci, A., 1988, Manganese uptake during calcite precipitation from sea water: conditions leading to the formation of a pseudokutnahorite: Geochimica et Cosmochimica Acta, v. 52, p. 1859-1868.

31- Rao, C.P., 1990, Petrography, trace elements and oxygen and carbon isotopes of Gordon Group carbonate (Ordovician), Florentine Valley, Tasmania, Australia: Sedimentary Geology, v. 66, p. 83–97.

32- Rao, C.P., 1991, Geochemical differences between subtropical (Ordovician), temperate (Recent and Pleistocene) and subpolar (Permian) carbonates, Tasmania, Australia: Carbonates and Evaporites, v. 6, p. 83-106.

33- Rao, C.P., and M.H. Adabi, 1992, Carbonate minerals, major and minor elements and oxygen and carbon isotopes and their variation with water depth in cool, temperate carbonates, western Tasmania, Australia: Marine Geololgy, v. 103, p. 249-272.

34- Rao, C.P., and Z.Z. Amini, 1995, Faunal relationship to grain-size, mineralogy and geochemistry in recent temperate shelf carbonates, western Tasmania, Australia: Carbonates and Evaporites, v. 10, p. 114-123.

35- Rao, C.P., and M.P.J. Jayawardane, 1994, Major minerals, elemental and isotopic composition in modern temperate shelf carbonates, eastern Tasmania, Australia: implications for the occurrence of extensive ancient non-tropical carbonates: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 107, p. 49–63.

36- Rao, C.P., and C.S. Nelson, 1992, Oxygen and carbon isotope fields for temperate shelf carbonates from Tasmania and New Zealand: Marine Geology, v. 103, p. 273-286.

37- Rao, C.P., 1996, Modern Carbonates, Tropical, Temperate, Polar. Introduction to Sedimentology and Geochemistry, Hobart (Tasmania), 206 p.

38- Salehi, M.A., M.H. Adabi, H. Ghalavand, and A. Ghobishavi, 2007, Reconstruction of the sedimentary environment and the petrographic and geochemical evidence for the original aragonite mineralogy of Lower Cretaceous carbonates (Fahliyan Formation) in the Zagros sedimentary basin, Iran: 13th Bathurst Meeting of Carbonate Sedimentologists, UK. (Poster).

39- Sepehr, M., and J.W. Cosgrove, 2004, Structural framework of the Zagros Fold-Thrust Belt, Iran: Marine and Petroleum Geology., v. 21, p. 829-843.

40- Shackleton, N.J., and J.P. Kennett, 1975, Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Site 277, 279 and 281. In: Kennett, J.P. and R.E. Houtz, (Eds.) Initial Report of the Deep-Sea Drilling Project, XXIX: U.S. Gort. Printing Office, Washington , D.C., p. 743-755.

41- Tucker, M.E., F. Calvet, and D. Hunt, 1993, Sequence stratigraphy of carbonate ramps: systems tracts, models and application to the Muschelkalk carbonate platform of eastern Spain. In: Posamentier, H.W., C.P. Summerhayes, B.U. Haq, and G.P. Allen, (Eds.), Sequence Stratigraphy and Facies Associations, v. 18. International Association of Sedimentology, Special Publication, p. 397–415.

42- Wilson J.L., 1975, Carbonate Facies in Geological History: Springer, Berlin, 471 p.