لیتوفاسیس وپتروفاسیس نهشته های الیگوسن در زون بینالود با تأکید برموقعیت تکتونیکی منشاء رسوبات در برش باغشن گچ در شمال نیشابور

نویسندگان

1 کارشناس ارشد، دانشگاه فردوسی مشهد

2 استاد، گروه زمین شناسی، دانشگاه فردوسی مشهد

3 استادیار، گروه زمین شناسی، دانشگاه فردوسی مشهد

4 کارشناس ارشد، سازمان زمین شناسی و اکتشافات معدنی

چکیده

 
در این مطالعه آنالیز رخساره‌های سنگی به منظور تفسیر محیط رسوبی و موقعیت تکتونیکی منشا نهشته‍های سیلیسی-آواری الیگوسن زون بینالود در برش باغشن گچ واقع در شمال نیشابور انجام گرفته است. مطالعات انجام شده منجر به شناسایی 14 رخساره سنگی و 4 عنصر ساختاری در ضخامتی حدود 160 متر شده اند. رخساره های سنگی در 3 گروه دانه درشت (Gmg,Gcm,Gmm,Gh,Gp,Gt)، دانه متوسط (Sh,Sp,ST,Sr,Sm,Sl) و دانه ریز (Fl,Fm) دسته بندی شده ‌اند. عناصر ساختاری شناسایی شده شامل SB ,LV وCH می باشند. برمبنای شواهد موجود، محیط تشکیل این نهشته ها محیط رودخانه بریده‌بریده می باشد. آنالیز پتروفاسیس های ماسه سنگی نشان می دهد که این رسوبات از منشایی با موقعیت تکتونیکی کمان ماگمایی در آب و هوای گرم و خشک سرچشمه گرفته اند. آنالیز جهت جریان قدیمه نشان دهنده جهت جریان شمال شرقی به جنوب غربی برای این نهشته ها می باشد.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Lithofacies and petrofacies of Oligocene deposits in Binalood Zone: Implication for tectonic setting of sediments in Baghshan-Gach section, North of Neyshabour

نویسندگان [English]

  • D Dehnavi 1
  • R Moussavi Harami 2
  • M.H. Mahmudy Gharaie 3
  • F Ghaemi 3
  • F Ghaemi 4
1 M.Sc. Student of Geology, Ferdowsi University of Mashhad
2 Professor, Department of Geology, Ferdowsi University of Mashhad
3 Assistant Professor, Department of Geology, Ferdowsi University of Mashhad
4 M.Sc. Geological Survey of Iran Mashhad Branch
چکیده [English]

Lithofacies analysis and interpretation of architectural elements of Oligocene silisiclastic deposits in Binaload Zone were investigated in Baghshan-Gach area, north of Neyshabour. This study led to identification of 14 lithofacies and 4 architectural elements in the sequence of 150 meter thick. Lithofacies are classified into three categories including coarse grain (Gmg, Gcm, Gmm, Gh, Gp and Gt), medium grain (Sh,Sp,St,Sr,Sm and Sl), and fine grain (Fl,Fm). The architectural elements are CH, SB, LV and SG. It is interpreted that Oligocene silisiclasic sediments have been deposited in braided river system, based on lithofacies analysis and architectural elements.Petrofacies analysis indicates that these rocks had oroigin from the magmatic arc and deposited under arid climatic condition. paleocurrent analysis represents that the river was flowing from NE to SW direction.
 

کلیدواژه‌ها [English]

  • Lithofacies
  • Architectural Elements
  • Binalood
  • Magmatic arc

 

 

1-               قائمی، ف.،  ف.، قائمی، ف.، حسینی، 1999،  نقشه زمین شناسی نیشابور (1:100000): انتشارات سازمان زمین شناسی کشور.

2-              موسوی حرمی، ر.، ا.، محبوبی، ع.، خردمند، ح.، زندمقدم، 1387، آنالیز رخساره های سنگی و سیکلهای به طرف بالا ریز شونده در نهشته های سیلیسی آواری. سازند داهو(کامبرین پیشین)، واقع در شرق و جنوب شرق زرند، شمال غرب کرمان: فصلنامه زمین شناسی ایران، ش6 ، ص.85-71 .

3-                Alavi, M., 1992, Thrust tectonics of the Binalood region, NE Iran: Tectonics, v. 11, p. 360- 370.

4-                Basu,A., S. Young, L. Suttner, W. James,., and G.H. Mack, 1975, Re-evaluation of the use of undulatory extinction and crystallinity in detrital quartz for provenance interpretation: Journal of Sedimentary Petrology, v. 45, p. 873–882.

5-                Bordy, E.M., O. Catuneanu., 2002, Sedimentology of the lower Karoo Supergroup fluvstratain the Tuli Basin,South Africa: African Earth Sci, v. 35, p. 503–521.

6-                Catuneanu, O., 2006,  Principles of Sequence Stratigraphy (First Edition): Elsevier-Amsterdam, p. 375.

7-                Catuneanu, O., and H.N. Elango, 2001, Tectonic control on fluvial styles: the Balfour Formation of the Karoo Basin, South Africa: Sedimentary Geology, v. 140, p. 291- 313.

 

8-                Dickinson, W.R., 1985, Interpreting provenance relation from detrital modes of  sandstones. In: Zuffa, G.G. (Ed.), Provenance of Arenites, Reidel, Dordrecht, p. 333–363.     

9-                Fielding, C.R., H.E. La Garry, L.A. La Garry, B.E. Bailey, and J.B. Swinehart, 2007,  Sedimentology of the whiteclay Gravel Beds (Ogallala Group) in northwestern Nebraska, USA: Structurally controlled drainage promoted by Early Miocene uplift of the Black Hills Dome: Sedimentary Geology, v. 202, p. 58-71.

 

10-            Folk, R.L., 1980, Petrology of sedimentary rocks. Hemphill, Austin, Texas, v. 159.

 

11-            Ghosh, P., S. Sarkar, and P ,Maulik, 2006, Sedimentology of a muddy alluvial deposit: Triassic Denwa Formation, India: Sedimentary Geology, v. 191, p. 3– 36.

 

12-            Hossain, H.M.Z., B.P. Roser., J.I.Kimura, 2010, Petrography and whole-rock geochemistry of the Tertiary Sylhet succession, northeastern Bengal Basin, Bangladesh: Provenance and source area weathering: Sedimantary Geology, v. 228, p. 171-183.

13-            Ingersoll, R.V., C.A. Suczek, 1979,  Petrology and provenance of Neogene sand from Nicobar and Bengal fans. DSDP sites 211 and 218: Journal of Sedimentary Petrology, v. 49, p. 1217-1228.

14-            Jin, Z., F . Li, J. Cao, S. Wang, and  J.Yu, 2006, Geochemistry of  Daihai  Lake sediments, Inner Mongolia, north China: Implications  for  provenance, sedimentary sorting and catchment weathering: Geomorphology, v. 80, p. 147–163.

15-            Khalifa, M., Q. Catuneanu, 2008, Sedimentary of the bahariya Formation (Early Cenomanian), Bahariya Oasis, Western Desert, Egypt: Journal of African Earth Sciences, v. 51, p. 89- 103.

16-            Kim, S.B., Y.G. Kim, H.R. Jo, K.S. Jeang, and S.K. Cjough, 2009, Depositional facies, architecture and environments of the Sihwa Formation (Lower Cretaceous), mid-west Korea with special refrence to dinosaur eggs: Cretaceous Research, v. 30, p. 100- 126.

17-            Miall, A.D., 2006, The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology: Springer-Verlag, p. 582

18-            Miall, A.D., 2000. Principle of Sedimentary Basin Analysis: Springer-Verlag, New York, p. 668.

19-            Nalpas, T., M.P. Dabard, G. Ruffet, A. Vernon, C. Mpodozis, A. Loi, and G. Heralli, 2008, Sedimentation and preservation of the Miocene Atecama Gravels in the pedernales- Chararal Area, Northern Chile: Climatic or tectonic control:  Tectonophysics, v. 459, p. 161- 173.

20-            Pettijohn, F.J., 1975, Sedimentary Rocks: Harper and Row, New York, p. 628.

21-            Roberts, E., 2007, Facies architecture and depositional environments of the Upper Cretaceous Kaiparowits Formation, southern Utah: Sedimentary Geology, v. 197, p. 207– 233.

22-            Suttner, L.J., P.K. Dutta, 1986, Alluvial sandstone composition and paleoclimate, I. Framework mineralogy: Journal of Sedimentary Petrology, v. 56, p. 329- 345.

23-            Suttner, L.J., A. Basu, and G.H. Mack, 1981, Climate and the origin of quartz arenites: Journal of  Sedimentary Petrology, v. 51, v. 1235- 1246.

24-            Shahidghazi, N., P. Mountney, 2009, Facies and architectural elementan alysis of a meandering  fluvial succession: The Permian Warchha Sandstone, SaltRange, Pakistan: Sedimentary Geology, v. 221, p. 99– 126.

25-            Shanely, K.W., P.J. McCab, 1998,  Relative role of eustasy, climate and tectonism in continental rocks. SEPM (Society of Sedimentary Geology) Special Publication, v. 59, 234.

26-            Therrien, F., 2006, Depositional environments and fluvial system changes in the dinosaur-bearing Sânpetru Formation (Late Cretaceous, Romania): Post-orogenic sedimentation in an active extensional basin: Sedimentary Geology, v. 192, p. 183– 205.

27-            Tucker, M.E., 2001, Sedimentary Petrology(Third Edition):  Blackwell-Oxford, p. 260.