‌خاک‌های دیرینه (پالئوسل)، انواع و ویژگی‌های آن در سازند شوریجه (ژوراسیک پسین- کرتاسه پیشین)، حوضه رسوبی کپه داغ، شمال شرق ایران

نویسندگان

1 دانشجوی دکتری دانشگاه فردوسی مشهد

2 استاد گروه زمین شناسی دانشگاه فردوسی مشهد

3 دانشیار گروه زمین شناسی دانشگاه فردوسی مشهد

چکیده

سازند شوریجه (ژوراسیک پسین-کرتاسه پیشین) در نواحی شرقی و جنوب شرقی حوضه رسوبی کپه داغ، شامل رخساره‌های آواری است که به سمت نواحی مرکزی و غربی حوضه، لایه‌های تبخیری و کربناته نیز در توالی رخساره‌ای این سازند مشاهده می‌گردد. علاوه بر رخساره‌های فوق، خاک‌های دیرینه مختلفی نیز در این سازند شناسایی شده که بر اساس برتری نسبی شش فرآیند خاکزایی به سه دسته هیستوسول‌ها (Histosols)، اکسی‌سول‌ها (Oxisols) و کلسی‌سول‌ها (Calcisols) قابل تفکیک‌اند. کلسی‌سول‌های سازند شوریجه بر اساس ترکیب کانی شناسی به انواع کالکریتی و دولوکریتی تقسیم شده‌اند که هر یک دارای اشکال ماکرومورفولوژی و میکرومورفولوژی ویژه‌ای هستند. بر اساس اختصاصات ماکروسکوپی و میکروسکوپی (میکرو فابریک‌های آلفا و بتا)، کالکریت‌های سازند شوریجه به دو نوع پدوژنیک و غیر پدوژنیک (آب زیرزمینی) تفکیک شده است که هر یک در شرایط ویژه‌ای شکل گرفته اند. دولوکریت‌های سازند شوریجه تنها در یک برش (برش اسفیدان) و در سنگ میزبان مادستونی یافت شده و بر اساس ویژگی‌های خود احتمالا منشأ غیر پدوژنیک (آب زیرزمینی) دارند. نوسانات سطح ایستابی همراه با شرایط آب و هوایی خشک تا نیمه خشک منجر به تشکیل کلسی سول‌های سازند شوریجه شده است.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Paleosols, types and their characteristics in the Shurijeh Formation, Kopet- Dagh basin, NE Iran

نویسندگان [English]

  • Sayedeh Maryam Mortazavi 1
  • Seyed Reza Mosavi Harami 2
  • Asadolah Mahbobi 2
  • Mehdi Najafi 3
1 Ph.D. Student, Department of Geology, Ferdowsi University of Mashhad
2 Professor, Department of Geology, Ferdowsi University of Mashhad
3 Associated Professor, Department of Geology, Ferdowsi University of Mashhad
چکیده [English]

The Shurijeh Formation (Late Jurassic- Early Cretaceous) consists of siliciclastic facies in the southeastern and eastern parts of the Kopet- Dagh basin, whereas evaporate and carbonate strata are present in its facies succession toward central and western parts of the basin. In addition, various paleosols are identified in this formation that based on relative preference of pedogenic procecces, are classified into three classes including histosols, oxisols and calcisols. The Shurijeh Formation calcisols, based on mineralogical composition, are divided into calcretes and dolocretes and contain special macromorphology and micromorphology features. Based on macroscopic- microscopic properties (alpha and beta microfabrics), the Shurijeh calcretes are divided into pedogenic and non- pedogenic (ground water) types that are formed under different conditions. The Shurijeh Formation dolocretes, only found in one section (Esfidan section), and the mudstone host rocks, are probably non- pedogenic (ground water). Water table fluctuations with arid to semiarid climatic conditions are caused calsisols creation in the Shurijeh Formation.
 

کلیدواژه‌ها [English]

  • Kopet- Dagh basin
  • paleosols
  • calcisols
  • water table fluctuations
  • arid to semiarid conditions
  • Shurijeh Formation
  • Kopet
  • Dagh Basin

 

1-            بختیاری، س، 1390، اتو اطلس ایران، مؤسسه جغرافیایی و کارتوگرافی گیتاشناسی، تهران، 64 صفحه.

2-      موسوی حرمی، ر.، ا.، محبوبی، م.، نجفی، م.، مرتضوی، 1386، شناسایی افق‌ها و ندول‌های کالکریتی در سازند شوریجه در شمال شرق فریمان، اولین کنگره زمین شناسی کاربردی ایران، مشهد، جلد دوم، 1360صفحه.  

3-             Achyuthan, H., J., Quade, L., Roe, and C., Placzek, 2007, Stable isotopic composition of pedogenic carbonates from the eastern margin of the Thar Desert, Rajasthan, India: Quaternary International, v. 162-163, p. 50-60.

4-             Alavi, M., H., Vaziri, K., Seyed-Emami, and Y., Lasemi, 1997, The Triassic, associated rocks of the Aghdarband areas in central, northeastern Iran as remnant of the Southern Turanian active continental margin: Geological Society of American Bulletin, v. 109, p. 1563-1575.

5-             Alonso-Zarza, A.M., 2003, Palaeoenvironmental significance of palustrine carbonates, calcretes in the geological record: Earth Science Review, v. 60, p. 261-298.

6-             Alonso-Zarza, A.M., and L.H., Tanner, 2006, Paleoenvironmental Record, Applications of Calcretes, Plaustrine Carbonates: Geological Society of America Special Paper, v. 416, 239p.

7-             Alonso-Zarza, A.J., and V.P., Wright,  2010, Calcretes, Developments in Sedimentology 61, 225-257.

8-             Arakel, A.V., 1986, Evolution of calcrete in palaeodrainages of the Lake Narpperby area, Central Australia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 54, p. 283-303.

9-             Armenteros, I., 2010, Diagenesis of Carbonates in Continental Settings, Geochemistry, Diagenesis and Applications 62, Elsevier, Amsterdam, p. 62-122.

10-         Berberian, M., and G.C.P., King, 1981, Toward a paleogeography, tectonic evolution of Iran: Canada Journal of Earth Sciences, v. 18, p. 210-265.

11-         Bourman, R.P.,  and C.D., Ollier, 2002, A critique of the Schellmann definition and classification of laterite: Catena, v. 47, p. 117- 131.

12-         De Boever, E., R., Swennen, and L., Dimitrov, 2006, Lower Eocene carbonate cemented chimneys (Varna, NE Bulgaria): Formation mechanisms, the (a) biological mediation of chimney growth: Sedimentary Geology, v. 185, p.159-173.

13-         Deocampo, D.M., 2010, Geochemistry of continental carbonates, In: Alonso-Zarza, A.M., Tanner, L.H. (Eds.), Carbonates in Continental Settings, Geochemistry, Diagenesis and Applications 62, Elsevier, Amsterdam, p. 1-59.

14-         De La Horra, R., M.I., Benito, Lopez- J., Gomez, A., Arche, J.F., Barrenechea, and J., Luque, 2008, Palaeoenvironmental significance of Late Permian palaeosols in the South-Eastern Iberian Ranges, Spain: Sedimentology, v. 55, p. 1849-1873.

15-         Dickson, J.A.D., 1966, Carbonate identification, genesis as revealed by staining: Journal of Sedimentary Petrology, v. 36, p. 441-505.

16-         Duchaufour, P., 1982, Pedology, Allen, Unwin, London, 448 p.

17-         Durand, N., Y., Gunnell, P., Curmi, and S.M., Ahmad, 2007, Pedogenic carbonates on Precambrian silicate rocks in South India: Origin: paleoclimate significance, Quaternary International, v. 162-163, p.35-49.

18-         El-Sayed, M.I., I.J., Fairchild,  and B., Spiro, 1991, Kuwaiti dolocrete: petrology, geochemistry and groundwater origin: Sedimentary Geology, v. 73, p. 59-75.

19-         Fu, Q., H., Qing, and H.M., Bergman, 2004, Dolomitized calcrete in the Middle Devonian Winnipegosis carbonate mounds, subsurface of south–central Saskatchewan, Canada: Sedimentary Geology, v. 168, p. 49–69.

20-         Gile, L.H., F.F., Peterson, and R.B., Grossman, 1966, Morphological and genetic sequences of carbonate accumulationin desert soils: Soil Science, v. 101, p. 347 -360.

21-         Gomez-Gras, D.,  and A.M., Alonso-Zarza, 2003, Reworked calcretes: their significance in the reconstruction of alluvial sequences (Permian and Triassic, Minorca, Balearic Islands, Spain): Sedimentary Geology, v. 158, p. 299-319.

22-         Goudie, A.S., 1973, Duricrusts in Tropical and Subtropical Landscapes, Claredon, Oxford, 174 p.

23-         Goudie, A., 1983, Calcrete. In: Goudie, A., Pye, K. (Eds.), Chemical Sediments, Geomorphology, Academic Press, London, 93-131.

24-         Jennings, D.S., D.M., Lovelace, and S.G., Driese, 2011,Differentiating Paleowetland Subenvironments Using a Multi-disciplinary Approach: an example from the Morrison Formation, South Central Wyoming, USA: Sedimentary Geology, Article in Press.

25-         Khadkikar, A.S., S.S., Merh, J.N., Malik, and L.S., Chamyal, 1998, Calcretes in semi- arid alluvial systems: formative pathways and sinks: Journal of Sedimentary Geology, v. 116, p. 251- 260.

26-         Khalaf, F.I., 1990, Occurrence of phreatic dolocrete within Tertiary clastic deposits of Kuwait, Arabian Gulf: Sedimentary Geology, v. 68, p. 223-239.

27-         Khalaf, F.I., and A.S., Gaber, 2008, Occurrence of cyclic palustrine and calcrete deposits within the lower Pliocene Hagul formation, East Cairo district, Egypt: Journal of African Earth Sciences, v. 51, p. 298–312.

28-         Khalifa, M.A., and O., Catuneanu, 2008, Sedimentology of the fluvial and fluvio- marine facies of the Bahariya Formation (Early Cenomanian), Bahariya Oasis, Western Desert, Egypt: Journal of African Earth Sciences, v. 51, p. 89- 103.

29-         Lyberis, N., and G., Manby, 1999, Oblique to orthogonal convergence across the Turan block in the post-Miocene: American Association of Petroleum Geologists Bulletin, v. 83, p. 1135-1160.

30-         Machette, M. N., 1985, Calcic soils of south western United States, In: Weide, D.L. (Ed.), Soil and Quaternary Geology of the South western United States: Geological Society of America, Special Paper, v.  203, p. 1-21.

31-         Mack, G.H., W.C., James, and H.C., Monger, 1993, Classification of paleosols: Geological Society of America Bulletin, v. 105, p. 129-136.

32-         Marriott, S.B., and V.P., Wright, 2006, Investigating paleosol completeness and preservationin mid-Paleozoic alluvial paleosols: a case study in paleosol taphonomy from the Lower Old Red Sandstone, In: Alonso-Zarza, A.M., Tanner, L.H. (Eds), Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates: Geological Society of America, Special Paper, v.  416, p. 43-52.

33-         Miall, A.D., 2006, The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, Petroleum Geology ( printing): Springer-Verlag, New York, 582p.

34-         Moussavi-Harami, R., and R.L., Brenner, 1990, Lower Cretaceous (Neocomian) fluvial deposites in eastern Kopet-Dagh Basin, northeastern Iran: Cretaceous Research, v. 11, p. 163-174.

35-         Moussavi-Harami, R., and R.L., Brenner, 1992, Geohistory analysis, petroleum reservoir characteristics of Lower Cretaceous (Neocomian) sandstones, eastern Kopet-Dagh Basin, northeastern Iran: American Association of Petroleum Geologists Bulletin, v. 76, p. 1200-1208.

36-         Moussavi-Harami, R., R.L., Brenner, 1993, Diagenesis of non-marine petroleum reservoirs: The Neocomian (Lower Cretaceous) Shurijeh Formation, Kopet-Dagh Basin, NE Iran: Journal of Petroleum Geology, v. 16, p. 55-72.

37-         Moussavi-Harami, R., A., Mahboubi, M., Nadjafi, R.L., Brenner, and M., Mortazavi, 2009, Mechanism of calcrete formation in the Lower Cretaceous (Neocomian) fluvial deposits, northeastern Iran based on petrographic, geochemical data: Cretaceous Research, v. 30(5), p. 1146-1156. 

38-         Murru, M., C., Ferrara, R., Matteucci, S., Da Pelo, E., Sarria, and A., Vacca, 2011, Pisolithic ferricretes around the Cretaceous- Palaeocene boundary in southern Sardinia (Italy) as palaeoenvironmental proxies: Comptes Rendus Geoscience, v. 343, p. 72- 81.

39-         Nash, D.J., and S.J., McLaren, 2003, Kalahari valley calcretes: their nature, origins, and environmental significance: Quaternary International, v. 111, p. 3-22.

40-         Netterberg, F., 1980, Geology of southern African calcretes: 1. Terminology, description, macrofeatures and classification: Transactions of the Geological Society of South Africa, v. 83, p. 255- 283.

41-         Nettleton, W.D., C.G., Olson, and D.A., Wysocki, 2000, Paleosol classification: Problems and solutions: Catena, v. 41, p. 61–92.

42-         Parcerisa, D., D., Gomez-Gras, A., Trave, J.D., Martin- Martin, and E., Maestro, 2006, Fe, Mn in calcites cementing red beds: a record of oxidation-reduction conditions examples from the Catalan Coastal Ranges (NE Spain): Journal of Geochemical Exploration, v. 89, p. 318-321.

43-         Ramazani Oomali, R., S., Shahriari, Hafezi N., Moghaddas, P., Omidi, and  J., Eftrkharnejhad, 2008, A model for Active tectonics in Kopet Dagh (North-East Iran): World Applied Sciences Journal, v. 3, p. 312- 316.

44-         Retallack, G.J., 1991, Untangling the effects of burial alteration, ancient soil formation: Annual Reviews Earth, Planetary Sciences, v. 19, p. 183-206.

45-         Retallack, G.J., 1998, Core concepts of paleopedology: Quaternary International, v. 51/52, p. 203-212.

46-         Ruttner, A.W., 1993, Southern borderland of Triassic Laurasia in northeast Iran: Geol. Rund, v. 82, p. 110-120.

47-         Schmid, S., R.H., Worden, and Q.J., Fisher, 2006, Carbon isotope stratigraphy using carbonate cements in the Triassic Sherwood Sandstone Group: Corrib Field, West of Ireland: Chemical Geology, v. 225, p. 137-155.

48-         Scott, A.C., 2000, The Pre-Quaternary history of fire: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 164, p. 281-329.

49-         Shaaban, M., 2004, Diagenesis of the Lower Eocene Thebes Formation, Gebel Rewagen area, Eastern Desert, Egypt: Sedimentary Geology, v. 165, p. 53-65.

50-         Soil Survey Staff, 2010, Keys to Soil Taxonomy (11h Edition), United States Department of Agriculture, 346 p.

51-         Tanner, L.H., and M.A., Khalifa, 2010, Origin of ferricretes in fluvial- marine deposits of the Lower Cenomanian Bahariya Formation, Bahariya Oasis, Western Desert, Egypt: Journal of African Earth Sciences, v. 56, p. 179- 189.

52-         Thomas, J.C., E.R., Cobbold, V.S., Shein, and S., Le Douaran, 1999, Sedimentary record of late Paleozoic to Recent tectonism in central Asia: analysis of subsurface data from the Turan and south Kazak domains: Tectonophysics, v. 313, p. 243-263.

53-         Vepraskas, M.J., and L.P., Wilding, 1994, Aquic conditions for soil taxonomy: concepts, soil morphology, micromorphology. In: Ringrose-Voase, A.J., Humphreys, G.S. (Eds.), Soil Micromorphology: Studies in Management, Genesis: Elsevier, Amsterdam, The Netherlands, p. 117-131.

54-         Williams, C.A., and F.F., Krause, 1998, Pedogenic-phreatic carbonates on a Middle Devonian (Givetian) terrigenous alluvial-deltaic plain, Gilwood Member (Watt Mountain Formation), northcentral Alberta, Canada: Sedimentology, v. 45, p. 1105-1124.

55-         Wright, V.P., 2007, Calcretes, In: Nash, D., McLaren, S. (Eds.), Geochemical Sediments and Landscapes, Wiley-Blackwell, Oxford, UK, p. 10-45.

56-         Wright, V.P., and M.E., Tucker, 1991, Calcretes: An introduction, In: Wright, V.P., Tucker, M.E. (Eds.), Calcretes: Blackwell Scientific, Oxford, p. 1-22.