مطالعه غلظت‌های کل و قابل تبادل فلزات سنگین Ag, Sr, Ni, Mn و Cu در پهنه گلی پلایای گاوخونی (جنوب شرق اصفهان)

نویسندگان

1 کارشناس ارشد زمین شناسی دانشگاه اصفهان

2 استادیار گروه زمین شناسی دانشگاه اصفهان

چکیده

 
پلایای گاوخونی با وسعت حدود 520 کیلومتر مربع واقع در فرودست رودخانه زاینده رود شامل سه پهنه اصلی گلی، ماسه‌ای و نمکی می­باشد. نهشته‌های گلی این پلایا بیشتر در دلتای زاینده رود و در زیر لایه نمکی گسترش دارند. رسوبات دانه ریز پلایای گاوخونی به دلیل شرایط آب و هوایی منطقه، سنگ شناختی و وجود معادن سرب و روی در حوضه آبریز و نیز عبور رودخانه از مناطق صنعتی و کشاورزی استعداد تمرکز بالای فلزات سنگین را دارند. میزان تغییرات خصوصیات رسوب شناسی رسوبات به صورت زیر می­باشد: کربنات کلسیم (73-5/35 درصد)، ماده آلی (12/17-53/2 درصد)، رس (88/60-45/6 درصد)، (53/8-6) pH و (میلی ولت 47+ تا 334-) Eh. از شمال به جنوب پلایا مقادیر کربنات کلسیم، pH و ماده آلی افزایش و مقدار رس و Eh رسوبات کاهش می­یابند. کانی­های رسی رسوبات گلی به ترتیب فراوانی شامل ایلِیت، کلریت، کائولینیت و مونت موریونیت می­باشند و در نمونه­های مورد بررسی مقدار آنها از شمال به جنوب پلایا تغییر چندانی نمی­یاید. غلظت فلزات سنگین بر حسب ppm در بیشتر نمونه­ها به ترتیب فراوانی شامل منگنز (1040-5/395)، استرانسیم (76/725-4/100)، نیکل (66/73-37)، مس (83/29-83/13) و نقره (76/4-03/3) است. مقدار نقره، نیکل و استرانسیوم بیش از حد معمول بوده و مقدار مس و منگنز کمتر از حد معمول در خاک­های طبیعی می­باشد. محاسبه شاخص زمین انباشتگی و فاکتور غنی شدگی نشان دهنده آن است که رسوبات از نظر آلایندگی به عنصر نقره شدیداً آلوده و از لحاظ سایر عناصر غیر آلوده می­باشند.غلظت قابل تبادل فلزات رسوبات نسبت به غلظت کل بسیار کمتر است .در غلظت­های قابل تبادل میزان ماده آلی نقش مهم­تری نسبت به مقدار رس و نوع کانی­های رسی ایفا نموده و افزایش آنها باعث افزایش مقادیر تبادلی گردیده است.
 

کلیدواژه‌ها


عنوان مقاله [English]

Study of total and exchangeable concentrations of Cu, Ag, Sr, Ni and Mn in mud flat of Gavkhoni playa lake (South east Isfahan)

نویسندگان [English]

  • Hajar Rahimi 1
  • Hamidreza Pakzad 2
  • Mehrad Pasandi 2
1 M.Sc. University of Isfahan
2 M.Sc. University of Isfahan
چکیده [English]

Gavkhuni Playa Lake covers about 520 km2 and is located at the downstream of Zayandeh-roud River. This playa is composed of  three main flats including mud, sand and salt flats. The muddy deposits mainly spread in Zayandeh-roud Delta and underly a saline sublayer. The fine grained sediments of Gavkhuni Playa Lake have potential for concentrations of heavy metals due to the climatic conditions, petrology and presence of lead and zinc ores in the drainage basin and the flowing of the river through the industrial and agricultural regions.Variations of characteristics are: calcium carbonate (35.5-73%), organic matters (2.53-17.12%), clay (6.45-60.88%), pH (6-8.53) and Eh (-334 -+ 47 mv). Calcium carbonate, pH and organic matters increase and clay and Eh decrease from north to south of the playa. Clay minerals of the muddy sediments in order of frequency include illite, chlorite, kaolinite and montmorionite, respectively and the amount of these minerals do not vary from north to south of the playa. Heavy metals concentrations in ppm are: Mn (395.5-1040), Sr (100.4-725.76), Ni (37-73.66), Cu (13.83-29.83) and Ag (3.03-4.76) in order of abundance. Ag, Ni and Sr concentrations are higher and Cu and Mn concentrations are lower than the mean concentrations of these elements in natural soils. Geoaccumulation index and enrichment factor show that the sediments are highly polluted only by Ag. Exchangable cation contents are much lower than the total concentrations. Organic matters have a more important role in the exchangeable concentration of the heavy metals relative to the type and content of clay minerals and their elevation leads to increase the exchangeable concentrations.
 

کلیدواژه‌ها [English]

  • Exchangable concentration
  • Mud flat
  • Gavkhuni Playa Lake

 

1-علی نیایی، ز.، ح. ر. پاکزاد.، و م. پسندی، 1389، بررسی عناصر سنگین کادمیوم، مس، منگنز، استرانسیوم و روی در پهنه ماسه ای پلایای گاوخونی (جنوب شرق اصفهان): مجموعه چکیده مقالات چهارمین همایش و نمایشگاه تخصصی مهندسی محیط زیست، دانشگاه تهران، صفحه 655.

2- میسون، برایان و مُر، ب. کارلتون، 1982، اصول ژئوشیمی، ترجمه فرید مُر و علی اصغر شرفی: شیراز، مرکز نشر دانشگاه شیراز، 1371، 320 صفحه.

3-کراسکف، بی. کنراد و برد، کی. دنیس (1994)، مبانی زمین شیمی، ترجمه فرید مر و سروش مدبری: تهران، مرکز نشر دانشگاهی تهران، 1377، 788 صفحه.

4-Adriano, D. C., 2001, Trace elements in terrestrial environments: Berlin, Springer, 867p.

5-Alavi, M., 1994, Tectonics of the Zagros orogenic belt of Iran: new data and interpretations: Tectonophysics, v. 229, n. 3-4, p. 211-238.

6-Alloway, B. J., 1994, Heavy metals in soils: USA, Springer, 384p.

7-Berberian, M., 1983, Continental deformation in the Iranian plateau: Tehran, Geological Survey of Iran, Report no. 52, 625p.

8-Bradl, H. B., C. Kim., U. Kramar., and D. Stiiben, 2005, Interactions of heavy metals: in H. B. Bradl, Metals in the environment: Germany, Elsevier, v. 6, p. 28-148.

9-Brookins, D. G, 1988, Eh-pH diagrams for geochemistry: Berlin, Springer-Verlag, 176p.

10-Carman, C. M., X. D. Li., G. Zhang., O. W. H. Wai., and Y. S. Li, 2007, Trace metal distribution in sediments of the Pearl river stuary and the surrounding coastal area: South China Environmental Pollution, v. 147, p. 311-323.

11-Edeltrauda, H., and J. Kyziol, 1990, Clays and clay minerals as the natural barriers for heavy metals in pollution mechanisms illustrated by polish rivers and soils: Themenband Umweltgeologie, v. 83, p. 163-176.

12-Farkas, A., C. Erratico., and L. Vigano, 2007, Assessment of the environmental significance of heavy metal pollution in surficial sediments of river Po: Chemosphere, v. 68, n. 4, p. 761-768.

13-Gay, D., and W. Maher, 2003, Natural variation of Copper, Zinc, Cadmium and Selenium concentrations in Bembicium nanum and their potential use as a bioremediator of trace metals: Water Research, v. 37, p. 2173-2185.

14-Gryschko, R., R. Kuhnle, K. Terytze, J. Breuer and K. Stahr, 2004, Soil extraction of readily soluble heavy metals and As with 1M NH4NO3-solution: Journal of Soils and Sediments, v. 4, p. 1-6.

15-Impellitteri, C. A., H. E. Allen., Y. Yin., S. J, You., and J. K. Saxe, 2001, Soil properties controlling metal partitioning: in H. M. Selim., and D. L. Sparks, Heavy metals release in soils: London, Lewis Publishers, p. 149-166.

16-Jenne, E. A., 1968, Controls on Mn, Fe, Co, Ni, Cu and Zn concentrations in soils and water: the significant role of hydrous Mn and Fe oxides: Advanced Chemicals, v. 73, p. 337-387.

17-Leivoury, M., 1998, Heavy metal contamination in surface sediments in the Gulf of Finland and comparison with the Gulf of Bothnia: Chemosphere, v. 36, p. 43-59.

18-Lueth, V., K. M. Megaw., N. E. Pingitore., and P. C. Goodell, 2000, Systematic variation in Galena solid-solution compositions at Santa Eulalia, Chihuahua, Mexico: Economic Geology, v. 95, n. 8, 1673p

19-Micό, C., L. Recatalt., M. Peris., and J. Sanches, 2008, Discrimination of lithogenic and anthropogenic metals in calcareous agricultural soils: Soil and Sediment Contamination, v. 17, p. 467-485.

20-Morillo, J., J. Usero., and I. Gracia, 2007, Potential mobility of metals in polluted coastal sediments in two bays of southern Spain: Journal of Coastal Research, v. 23, n. 2, p. 352-361.

21-Muller, G., 1979, Schwermetalle in den sediments des rheins veranderungen seitt, umschan, v. 79, p. 773-778.

22-Mynard, J. B., 1983, Geochemistry of sedimentary ore deposits: New York, Springer, 305p.

23-McBride, M. B., 1994, Environmental chemistry of soils: New York, Oxford University Press, Inc, 411 p.

24-Pakzad, H. R., 2003, Sedimentary facies associations of the lower reaches of the Zayandeh River and Gavkhoni playa lake basin (Esfahan province, Iran): Doctoral dissertation, Clausthal University, 254p.

25-Pakzad, H. R., and F. Fayazi, 2007, Sedimentology and stratigraphic sequence of the Gavkhoni playa lake SE Esfahan, Iran: Carbonates and Evaporites, v. 22, p. 93-100.

26-Salomons, W., and U. Forstner, 1984, Metals in the hydrocycle: New York, Springer-Verlag, 333 p.

27-Schultz, L. G., 1964, Quantitative interpretation of mieralogical composition from X-ray and chemical data for the Pierre Shale: USA, Geological Survey Professional Paper, v. 391-C, p. 1-31.

28-Storer, D. A., 1984, A simple high volume ashing procedure for determining soil organic matter: Commun. Soil Sci. Plant Anal, v. 15, p. 759-772.

29-Stoecklin, J., 1968, Structural history and tectonics of Iran: Association of Petroleum Geology Bulletin, v. 52, n. 7, p. 1229-1285.

30-Svendsen, M. L., E. Steinnes., and H. A. Blom, 2007, Vertical and horizontal distributions of Zn, Cd, Pb, Cu and Hg in uncultivated soil in the vicinity of Zinc smelter at Odda: Soil and Sediment Contamination, v. 16, p. 585-603.

31-U. S. EPA Office of Solid Waste and Emergency Response, 1983: Hazardous Waste Land Treatment, SW-847, 273p.

32-Wu, J., A. Liard., and M. L. Thompson, 1999, Sorption and desorption of copper on soil clay components: Journal of Environmental Quallity, v. 28, 334p.

33-Zhong, A. P., S. H. Guo., F. M. Li., G. Li., and K. X. Jiang, 2006, Impact of anions on the heavy metals release from marine sediments: Journal of Environmental Sciences, v. 18, n. 6, p. 1216-1220