پتروگرافی و دیاژنز ماسه‏سنگ‏های سازند پادها (دونین زیرین-میانی) در برش بوژان، حوضه رسوبی بینالود، شمال شرق ایران

نوع مقاله: مقاله علمی

نویسنده

دانشیار، گروه زمین‏‌شناسی، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران

چکیده

سازند سیلیسی آواری پادها (دونین زیرین-میانی)، در حوضه رسوبی بینالود، دارای حداکثر ضخامت 108 متر است. این توالی در منطقه بوژان به‏صورت ناپیوسته بر روی بازالت‏های اوردویسین قرار گرفته، و توسط رسوبات کربناته سازند سیبزار (دونین میانی)، به‏طور هم شیب پوشیده شده است. بیشتر ماسه‏سنگ‏ها غنی از کوارتز و فلدسپات بوده و بندرت شامل خرده سنگ‏های رسوبی و دگرگونی است. این سنگ‏ها تنوع ترکیبی زیادی نداشته، به‏طورعمده شامل کوارتزآرنایت، ساب آرکوز، و کمی آرکوز است. بنا بر مطالعات پترولوژیکی و ژئوشیمیایی، رخدادهایی مرحله ائوژنز شامل سیمانی شدن (کلسیت، دولومیت و اکسید آهن) و بندرت شکستگی است. رخدادهای مرحله مزوژنز، بیشتر سیمانی شدن (سیلیس، دولومیت، کلسیت، ترکیبات اکسید آهن، کانی‏های رسی)، فشردگی، شکستگی‏های درون دانه‏ای، دگرسانی دانه‏های ناپایدار، انحلال و جانشینی، انحلال فشاری، و بندرت آپاتیت است. رخدادهای فرعی انحلال و سیمانی شدن (دولومیت، آنکریت، سیدریت، اکسید آهن و بندرت کائولن) در مرحله تلوژنز اتفاق افتاده است. بیشتر تخلخل از نوع ثانویه با میانگین 7/4 درصد بوده، که حاصل انحلال و شکستگی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Petrography and diagensis of Padeha Formation sandstones (Lower-Middle Devonian) at Bujhan section, Binalud Basin, NE Iran

نویسنده [English]

  • Mehdi Reza Poursoltani
Department of Geology, Mashhad Branch
چکیده [English]

Introduction:
The siliciclastic Padeha Strata (Middle Devonian), in the Binalud, 108 metres thick, in the Bujhan area, rests unconformably on Ordovisian basalts. This strata conformably overlain by carbonate rocks of the Sibzar Formation (Middle Devonian). The one stratigraphic section was logged graphically, and 98 fresh sandstone samples were systematically collected, from which 63 thin sections were made. Petrographic modal analyses were made using a Nikon E400 Pol microscope, with 500 point counts on 63 selected samples using the Gazzi-Dickinson method to identify grain and cement types and proportions. Porosity was estimated from counts of 500 points in each of 22 thin sections prepared separately with blue epoxy. Six polished thin sections were studied to determine the composition of mineral components. The Scanning Electron Microscope (SEM) used was a LEO 1450 VP at an acceleration voltage of 30.00 kv. Luminescence characteristics of the same sandstone suite were studied using a conventional hot-cathode cathodoluminescence (HCL) microscope (model HC4-LM).
Discussion and Results:
Based on field and Laboratory studies, 3 association facies, sandstone, dolostone and shale have been identified. The sandstones are fine- to medium-grained and grain-supported, with some coarse-grained and well-rounded components. Based on angularity, sorting, and matrix content, most sandstones are mature and submature. Detrital grains are quartz, predominantly monocrystalline quartz with subordinate polycrystalline quartz, K-feldspar and plagioclase, lithic grains, and accessory minerals and micas. Lithic grains are mainly metamorphic and sedimentary. Dense-minerals include opaques, zircon and tourmaline, dispersed. The sandstones have a compositional range from quartzarenite, subarkose and little bit of arkose.
The Padeha sandstones experienced diagenetic events that included cementation, alteration, compaction and fracturing, dissolution and replacement and porosity. The predominant cement is silica and carbonate (dolomite, calcite, ankerite and siderite), iron oxide, clay minerals (kaolinite, illite and chlorite), with minor authigenic minerals such as appetite. The silica is typically non-luminescent, and mainly occurs as syntaxial overgrowths on detrital quartz grains; reddish rims of very fine-grained material that probably include clay and iron oxides mark the contacts between authigenic and detrital quartz. Silica also forms pore-filling cement in primary pores. The cements occupy inter- and intragranular spaces, form veins and fill fractures, and vary from microcrystalline to coarsely crystalline in the case of calcite. Iron oxide cement is present throughout the Padeha sandstones as an alteration product and cement. Clay minerals are less than other type of cements, but illite and kaolinite are the main clay minerals cement in Padeha sandstones. Authigenic minerals mainly fill fracturs and pores. The sandstones show variable degrees of mechanical and chemical compaction, which is particularly prominent where early cements are lacking. Grain contacts include elongate and concavo-convex, point contacts in rare cases, and sutured contacts that indicate intergranular pressure solution and deformation at a more advanced stage. Quartz and feldspar grains have been intensively fractured but the fractures have been largely healed through silica cementation, allowing the grains to maintain their integrity. This was evident using SEM and CL techniques, which show that the majority of grains contain fractures. Dissolution is prominent in the sandstones. Detrital K-feldspar, quartzand carbonate cement all show evidence of partial to complete dissolution. In feldspars, the proportion of voids is variable, with dissolution prominent along cleavages and fractures.
Based on two-dimensional estimates from thin sections, the mean porosity is 4.7%, and maximum 14.4% for 22 samples from the formation as a whole, with little apparent upward change. The bulk of the porosity is secondary. Pores formed mainly through dissolution of K-feldspar and carbonate cement, and as open fractures within grains.
Conclusion:
Based on petrological and geochemical studies, minor diagenetic events in the eodiagenetic stage include cementation (calcite, dolomite and iron oxide) and rarely fracturing. Mesodiagenetic events were dominated by cementation (silica, dolomite, calcite, iron oxide components, clay minerals), compaction, intra-grain microfractures, alteration of unstable clasts, dissolution and replacement, pressure solution, and rarely formation of apatite. Minor telodiagenetic events include dissolution and cementation (dolomite, ankerite, siderite, iron oxide and rarely kaolinite). The bulk of the porosity is secondary, with an average of 4.7%, which is the result of dissolution and fractures

آقانباتی، ع.، 1383، زمین‏شناسی ایران: سازمان زمین‏شناسی و اکتشافات معدنی کشور، 586 صفحه.

پورسلطانی، م.ر.، و م.ر. قطبی راوندی، 1393، تاریخچه دیاژنز ماسه‏سنگ‏های کامبرین زیرین، در رخنمون گزوئیه، ایران مرکزی: نشریه پژوهش‏های چینه‏نگاری و رسوب‏شناسی، ش 4، ص 103-125.

پورسلطانی، م.ر.، 1394، فشردگی، شکستگی و سیمانی شدن، رخدادهای اصلی دیاژنتیکی- مثالی از کوارتزیت بالایی سازند لالون، منطقه بینالود، ایران: دو فصلنامه رخساره‏های رسوبی (زیر چاپ).

قائمی، ف.، ف. قائمی، و ک. حسینی، 1378، نقشه زمین‏شناسی چهارگوش 100،000 : 1 نیشابور: سازمان زمین‏شناسی و اکتشافات معدنی کشور. 

حسینی‏برزی، م.، و م. سعیدی، 1389 ، برخاستگاه زمین ساختی ماسه‏سنگ‏های سازند پادها در برش سمیرکوه، ایران مرکزی: با در نظر گرفتن تأثیر فرایندهای دیاژنزی بر ترکیب ماسه‏سنگ‏ها: فصلنامه علوم زمین، ش 78 ، ص 158 – 147.

رحیمی، ب.، و ف. قائمی، 1393، رسوب‏گذاری در ارتباط با تکتونیک راندگی‏ها در کوه‏های بینالود: دوفصلنامه رخساره‏های رسوبی، ش7، ص232-212.

نبوی، م.ح.، 1355، دیباچه‏ای بر زمین‏شناسی ایران: 109 ص.

Aharipour, R., M.R. Moussavi, H. Mosaddegh, and B. Mistiaen, 2010, Facies features and paleoenvironmental reconstruction of the Early to Middle Devonian syn-rift volcano-sedimentary succession (Padeha Formation) in the Eastern-Alborz Mountains, NE Iran: Facies, v. 56, p. 279–294.

Alavi, M., 1991, Sedimentary and structural characteristics of thePaleo-Tethys remnants in northeastern Iran: Geol. Soc. of Amer. Bull, v. 103, p. 983-992.

Alavi-Naini, M., and S.M. Amidi, 1968, Geology of Western part of Takab Quadrangle: Geology Survey of Iran, Note no. 49, 98 p.

Alavi-Naini, M., 1993, Paleozoic stratigraphy of Iran: Geology Survey of Iran, Treatise on the Geology of Iran, v. 5, 492 p. (in Persian).

Avigad, D., A. Sandler, K. Kolodner, R.J. Stern, M. McWilliams, N. Miller, and M. Beyth, 2005, Mass-production of Cambro-Ordovician quartz-rich sandstone as a consequence of chemical weathering of Pan-African terranes: Environmental implications: Earth and Planetary Science Letters, v. 240, p. 818-826.

Baron, M., and J., Parnell, 2007, Relationships between stylolites and cementation in sandstone reservoirs: Examples from the North Sea, U.K. and East Greenland: Sedimentary Geology, v. 194, p. 17-35.

Bennett, P., and D.I. Siegel, 1987, Increased solubility of quartz in waterdue to complexing by organic comounds: Nature, v. 326, p. 684-686.

Boles, J.R., and S.G. Franks, 1979, Clay diagenesis in Wilcox sandstones of southwest Texas: implications of smectite diagenesis on sandstone cementation: Journal of Sedimentary Petrology, v. 49, p. 55-70.

De Ros, L.F., 1998, Heterogeneous generation and evolution of diagenetic quartzarenites in the Silurian-Devonian Fumas Formation of the Paran Basin, southern Brazil: Sedimentary Geology, v. 116, p. 99-128.

Dickinson, W.W., and K.L., Milliken, 1995, The diagenetic role of brittle deformation in compaction and pressure solution, Elltjo Sandstone, Namibia: Journal of Geology, v. 103, p. 339-347.

Dutton, S.P., and T.N. Diggs, 1990, History of quartz cementation in the Lower Cretaceous Travis Peak Formation, east Texas: Journal of Sedimentary Petrology, v. 60, p. 191-202.

Dill, H.G., S. Khishigsuren, S. Melcher, J. Bulgamaa, K. Bolorma, R. Bot, and U. Schwarz-Schampera, 2005, Facies-related diagenetic alteration in lacustrine–deltaic red beds of the Paleogene Ergeliin Zoo Formation (Erdene Sum area, S. Gobi, Mongolia): Sedimentary Geology, v. 181, p. 1-24.

El-ghali, M.A.K., H. Mansurbeg, S. Morad, I. Al-Aasm, and G. Ajdanlisky, 2006, Distribution of diagenetic alterations in fluvial and paralic deposits within sequence stratigraphic framework: Evidence from the Petrohan Terrigenous Group and the Svidol Formation, Lower Triassic, NW Bulgaria: Sedimentary Geology, v. 190, p. 299–321

Folk, R.L., 1980, Petrology of Sedimentary Rock, Hemphill Publishing Co., Texas, 182 p.

Gazzi, P., 1966, Learenariedelfly schsopracretaceodell’ Appenninomodenese; correlazioni con ilflysch di Monghidoro: Mineralogy Petrography Acta., v. 12, p. 69–97.

Goldstein, R.H., and C. Rossi, 2002, Recrystallization in quartz overgrowths: Journal of Sedimentary Research, v. 72, p. 432-440.

Giroir, G., E. Merino and D. Nahon, 1989, Diagenesis of Cretaceous sandstone reservoirs of the South Gabon Rift Basin, West Africa: mineralogy, mass transfer, and thermal evolution: Journal of Sedimentary Petrology, v. 59, p. 482-493.

Götte, T., K. Ramseyer, T. Pettke, and M. Koch-Müller, 20013, Implications of trace element composition of syntaxial quartz cements for the geochemical conditions during quartz precipitation in sandstones: Sedimentology, v. 60, p. 1111–1127.

Hartmann, B.H., K. Ramseyer, and A. Matter, 2000, Diagenesis and pore-water evolution in Permian sandstones, Gharif Formation, Sultana of Oman: Journal of Sedimentary Researh, v. 70, p. 533-544.

Huggett, J.M., A.S. Gale and D. McCarty, 2010, Petrology and palaeoenvironmental significance of authigenic iron-rich clays, carbonates and apatite in the Claiborne Group, Middle Eocene, NE Texas: Sedimentary Geology, v. 228, p. 119–139.

Hillier, S., 1994, Pore-lining chlorites in siliciclastic reservoir sandstones: electron microprobe, SEM and XRD data, and implications for their origin: Clay Minerals, v. 29, p. 665-679.

Karim, A., G. Pe-Piper, and D.J.W. Piper, 2010, Controls on diagenesis of Lower Cretaceous reservoir sandstones in the western Sable Subbasin, offshore Nova Scotia: Sedimentary Geology, v. 224, p. 65-83.

Ketzer, J.M., L.F. De Ross, and D. Norberto, 2005, Kaolinitic meniscus bridges as an indicator of early diagenesis in Nubian sandstone, Sinai, Egypt – discussion: Sedimentology, v. 52, p. 3213-217.

Kim, Y., and Y.I. Lee, 2003, Diagenesis of shallow marine sandstones, the Lower Ordovician Dongjeom Formation, Korea: response to relative sea-level changes: Journal of Asian Earth Sciences, v. 23, p. 235-245.

Kim, C.K., Y. Lee, and K. Hisada, 2007, Depositional and compositional controls on sandstone diagenesis, the Tetori Group (Middle Jurassic - Early Cretaceous), central Japan: Sedimentary Geology, v. 195, p. 183-202.

Lander, R.H., R.E. Larese, and L.M. Bonell, 2008, Toward more accurate quartz cement models: the importance of euhedral versus noneuhedral growth rates: American Association of Petroleum Geologists Bulletin, v. 92, p. 1537–1563.

Lanson, B., D. Beaufort, G. Berger, A. Bauer, A. Cassagnabère, and A. Meunier, 2002, Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: A Review: Clay Mineral, v. 37, p. 1–22.

Liu, K.W., 2002, Deep-burial diagenesis of the siliciclastic Ordovician Natal Group, South Africa: Sedimentary Geology, v. 154, p. 177-189.

Lundegard, P.D., and A.S. Trevena, 1990, Sandstone diagenesis in the Pattani Basin (Gulf of Thailand): history of water-rock interaction and comparison with the Gulf of Mexico: Applied Geochemistry, v. 5, p. 669-685.

Mansurbega, H., S. Morada, A. Salemc, R. Marfild, M.A.K. El-ghalie, J.P. Nystuenf, M.A. Cajad, A. Amorosig, D. Garciah, and A. La Iglesia, 2008, Diagenesis and reservoir quality evolution of palaeocene deep-water,marine sandstones, the Shetland-Faroes Basin, British continental shelf: Marine and Petroleum Geology, v. 25, p. 514–543.

Mcbride, E.F., 1989, Quartz cement in sandstones: A review: Earth–Science Reviews, v. 26, p. 69 – 112.

Mcbride, E.F., L.S. Land, and L.E. Mack, 1987, Diagenesis, Norphler Formation (Upper Jurassic), Rankin County, Mississippi, and Mobile County, Alabama: American Association of Petroleum Geologists, Bulletin, v. 71, p. 1019-1034.

Molenaar, N., J. Cyziene, and S. Sliaupa, 2007, Quartz cementation mechanisms and porosity variation in Baltic Cambrian sandstones: Sedimentary Geology, v. 195, p. 135-159.

Morad, S., and A.A. Aldaham, 1986, Diagenetic alteration of detrital biotite in Protrozoic sedimentary rocks from Sweden: Sedimentary Geology, v. 47, p. 95-107.

Makowitz, A., and K.L. Milliken, 2003, Quantification of brittle deformation in burial compaction, Frio and Mount Simon Formation sandstones: Journal of Sedimentary Petrology, v. 73, p. 999-1013.

Makowitz, A., R.H. Lander, K.L. Milliken, 2006, Diagenetic modeling to assess the relative timing of quartz cementation and brittle grain processes during compaction: American Association of Petroleum Geologists Bulletin, v. 90, p. 873-885.

McBride, E.F., 2012, Heterogeneous packing and quartz cementation of the Eureka quartzerinte (Middle Ordovician), Utah and Nevada, U.S.A.: Journal of Sedimentary Research, v. 82, p. 664-680.

Milliken, K.L., 1994, The widespread occurrence of healed microfractures in siliciclastic rocks: evidence from scanned cathodoluminescence imaging. In Nelson, P. P. and Laubach, S. E. (Eds.), Rock Mechanics: Models and Measurements, Challenges from Industry: 1st North American Rock Mechanics Symposium, A. A. Balkema, p. 825-832.

Morad, S., J.M. Ketzer, L.F. De Ros, 2000, Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins: Sedimentology, v. 47, p. 95–120.

Piper, D.J.W., T. Hudert, G. Pe-piper, and A.C. Okwese, 2009, The role of pedogenesis and diagenesis in clay mineral assemblages: Lower Cretaceous fluvial mudrocks, Nova Scotia, Canada: Sedimentary Geology, v. 213, p. 51-63.

Poursoltani, M.R., and M.R. Gibling, 2011, Composition, porosity and reservoir potential of the Middle Jurassic Kashafrud Formation, northeast Iran: Marine and Petrolume Geology, v. 28, p. 1094-1110.

Poursoltani, M.R., and M.R. Gibling, 2015, Compaction, brittle grain fracturing and silica cement, the main diagenetic events: Cambrian sandstones, Central Iran: The 2nd International Applied Geoscience Conference, p. 121-126.

Poursoltani, M.R., and G. Pe-Piper, 2015, Source and diagenesis of Middle Jurassic mudstones, Kopet-Dagh Basin, NE Iran: Geopersia, v. 2, no. 5, p. 93- 109 .

Reed, J.S., K.A. Eriksson, and M. Kowalewski, 2005, Climatic, depositional and burial controls on diagenesis of Appalachian Carboniferous sandstones: qualitative and quantitative methods: Sedimentary Geology, v. 176, p. 225-246.

Ros, L.F., De., S. Morad and I.S. Al-Aasm, 1997, Diagenesis of siliciclastic and volcaniclastic sediments in the Cretaceous and Miocene sequences of the NW African margin (DSDP Leg 47A, Site 397): Sedimentary Geology, v. 112, p. 137-156.

Renard, F., E. Brosse, and J.P. Gratier, 2000, The different processes involved in the mechanism of pressure solution in quartz-rich rocks and their interactions. In: Worden, R.H., Morad, S. (Eds.), Quartz Cementation in Sandstones: Blackwell Science, p. 67-78.

Ruttner, A., M.H. Nabavi, and J. Hajian, 1968, Geology of Shirgesht area (Tabas area, East Iran): Geological Survey of Iran, 133 p.

Salem, A.M., J.M. Ketzer, S. Morad, R.R. Rizk, and I.S. Al-Aasm, 2005, Diagenesis and Reservoir-Quality evolution of incied-valley sandstones: Evidence from the Abu Madi Gas Reservoirs (Upper Miocene), The Nile Delta Basin, Egypt: Journal of Sedimentary Research, v. 75, p. 572-584.

Siebert, R.M., G.K. Moncure, and R.W. Lanhann, 1984, A theory of framework grain dissolution in sandstones, In: Clastic Diagenesis (Ed, D. A. Mcdonald and R. C. Surdan). Tulsa, Oklahama, U.S.A.: American Association of Petroleum Geologists, Memoir, v. 37, p. 163-176.

Schmid, S., R.H. Worden, and Q.J. Fisher, 2004, Diagenesis and reservoir quality of the Sherwood Sandstone (Triassic), Corrib Field, Slyne Basin, west of Ireland: Marine and Petroleum Geology, v. 21, p. 299-315.

Schmidt, V., and D.A. McDonald, 1979, The role of secondary porosity in the course of sandstone diagenesis. In: Scholle, P.A., Schluger, P.R. (Eds.), Aspects of Diagenesis: SEPM, Special Publication, v. 26, p. 175-207.

Souza, R.S., and C.M. Assis Silva, 1998, Origin and timing of carbonate cementation of the Namorado Sandstone (Cretaceous), Albacora Field, Brazil: implications for oil recovery: Sedimentology, v. 26, p. 309 – 325.

Tang, Z., Parnell, J., and F.J. Longstaffe, 1997, Diagenesis and reservoir potential of Premian Triassic fluvial/lacustrine sandstone in the Southern Junggar Basin, Northwestern China: American Association of Petroleum Geologists, Bulletin. v. 81, p. 1843 – 1865.

Uysal, I.T., S.D. Golding, and M. Glikson, 2000, Petrographic and isotope constraints on the origin of authigenic carbonate minerals and the associated fluid evolution in Late Permian coal measures, Bowen Basin (Queensland), Australia: Sedimentary Geology, v. 136, p. 189-206.

Wahab, A.A., 1998, Diagenetic history of Cambrian quartzarenites, Ras Dib–Zeit Bay area, Gulf of Suez, eastern desert, Egypt: Sedimentary Geology, v. 121, p. 121–140.

Wanas, H.A., 2008, Calcite-cemented concretions in shallow marine and fluvial sandstones of the Birket Qarun Formation (Late Eocene), El-Faiyum depression, Egypt: Field, petrographic and geochemical studies: Implications for formation conditions: Sedimentary Geology, v. 212, p. 40-48.

Walderhaug, O., and P.A. Bjørkum, 2003, The effect of stylolite spacing on quartz cementation in the Lower Jurassic Sto Formation, southern Barents Sea: Journal of Sedimentary Research, v. 73, p. 146-156.

Wendt, J., B. Kaufmann, Z. Belka, N. Farsan and A. Karimi-Bavandpur, 2002, Devonian/Lower Carboniferous stratigraphy, facies patterns and paleogeography of Iran, Part I. Southeastern Iran: Acta Geologica Polonica, v. 52,129–168.

Wendt, J., B. Kaufmann, Z. Belka, N. Farsan, A. Karimi-Bavandpur, 2005, Devonian/Lower Carboniferous stratigraphy, facies patterns and paleogeography of Iran Part II. Northern and central Iran: Acta Geologica Polonica, v. 55, 31–97.

Zand-Moghadam, H., R. Moussavi-Harami, and A. Mahboubi, 2014, Sequence stratigraphy of the Early–Middle Devonian succession (Padeha Formation) in Tabas Block, East-Central Iran: Implication for mixed tidalflat deposits, Palaeoworld, v. 23, PP. 31–49.

Zhang, B., J. Zhang, S. Yan, Z. Gu, and X. Wang, 2012, Detrital quartz and quartz cement in Upper Triassic reservoir sandstones of the Sichuan basin: Characteristics and mechanisms of formation based on cathodoluminescence and electron backscatter diffraction analysis: Sedimentary Geology, v. 267-268, p. 104–114.