Investigating the stratigraphic role of the Tirgan Formation on water wells discharge in the north and east of Bojnourd (NE Iran)

Firouz Shakiba
Ph.D. in Hydrogeology, Department of Geology, Shahrood University of Technology, Shahrood, Iran
Gholam Hossein Karami*
Associate Professor, Department of Geology, Shahrood University of Technology, Shahrood, Iran
Azzolah Taheri
Professor, Department of Geology, Shahrood University of Technology, Shahrood, Iran
*Corresponding author, email: g.karami@shahroodut.ac.ir

Abstract
To supply water for drinking and industry, several water wells have been drilled in the Kopet-Dagh basin. These water wells have been drilled in the north and northeast of Bojnourd in the Tirgan Formation. There is a significant relationship between stratigraphy and water wells flow rates. Water wells which are drilled in the north-east of the area in comparison with those drilled in the east of the area, have higher flow rates. A complete stratigraphic section of Tirgan Formation (i.e. Baba Musa) with a thickness of 510 m was measured, sampled and studied as well as drilling log data of each of the water wells. The Baba Musa section can be divided into five rock units composed of limestone, marl and marly-limestone. Limestone rock units are considered as karst-aquifer and marly-limestone and marl are considered to be semi-permeable layers and impermeable, respectively. Water wells drilled in the upper limestone have the highest flow rates than other water wells. The wells that have not penetrated the entire upper limestone while penetrated the middle limestone and upper marly-limestone, although they are twice as deep, have a much lower flow rates. Therefore, the best water-bearing layer of the Tirgan Formation is the upper limestone.
Keywords: Permeable, Impermeable, Semi-permeable layer, Drilling Log, Tirgan Formation

Introduction
Various consumers in Iran are dependent on groundwater resources of alluvial aquifers. In the last few decades, due to water shortage in alluvial aquifers, karst aquifers have been widely considered. The high costs of drilling wells in karstic Formations lead to more precise studies to determine appropriate drilling locations. Tirgan Formation is one of the most important karstic formations in the Kopet-Dagh area in northeast of Iran. Several wells in this formation have been drilled for drinking water and industrial consumptions. Some of the wells drilled in the Tirgan Formation, although not much depth (137-140 m), have very high flow rates, while some wells with high depth (250 m) have a lower flow rates. Several factors play a role in the development of karst which one of the most important is stratigraphy. There is a relationship between karst development with lithology and limestone thickness. Generally, thicker limestone rock units contain more karst development.
Based on hydrogeological characteristics, in some cases, two or more formations can be considered as a hydrogeological unit. However, sometimes it is necessary to split a formation into separate hydrogeological units. Due to the large development of the Tirgan Formation in the studied area as well as its high discharge potential, this formation has been widely studied. Simple bedding and the sequence of thick limestone with marl or marl-limestone rock units have played a significant role in the development of karst in the Tirgan formation. Accurate understanding of the location and depth of the water bearing rock units in this formation depends on detailed stratigraphic studies.

Material and methods
In this research, in the north and eastern part of Bojnourd, a stratigraphic section of Tirgan, in Baba Musa mountain, was measured and sampled (85 samples for thin sections). In order to nomenclature and interpretation of the microfacies of the Tirgan Formation, procedures of Flügel (2004) and Dunham (1962) have been used. Like systematic studies of stratigraphy, the physical properties of the layers including thickness, layering, color, hardness, erosion, slope and topography, dip and thickness of layers around water wells were also evaluated. Water wells information including, lithology logs and geophysical logs (gamma, self-potential, electrical resistance) were also used. Water level data-sets during drilling, pumping, and subsequent years were evaluated. The geological profiles of all water wells were studied.
mapped and the depths of well penetration were determined. By analyzing the above-mentioned data-sets, the Tirgan Formation is divided into several layers with different permeabilities.

Discussion of Results and Conclusions

In this research, the information extracted from the Baba Musa stratigraphic column and data-sets obtained from the water wells in the studied area were combined. According to the information integration, the Tirgan Formation is divided into five rock units which are three limestones and two marly limestone rock units. The arrangement of these rock units from base to top are as follows: basal limestone, basal marly limestone, middle limestone, upper marly limestone and upper limestone. The stratigraphic position of limestone and marly-limestone units results in the recharged water, mainly penetrating into the upper limestone layer. Therefore, due to the presence of limestone, marl and marly limestone rock units, the Tirgan Formation is divided into permeable, impermeable or semi-impermeable units. In addition, the degree of purity of the upper limestone layer is much greater than that of the other two limestone layers. These two factors cause the degree of karstification in upper limestone is much greater than that of the other two limestone layers. Information obtained from the water wells show that they have penetrated the upper limestone rock unit or up to the middle limestone rock unit. Given the above-mentioned characteristics, those water wells drilled in the upper limestone unit have the highest flow rate in comparison with other ones.
بررسی نقش چینه‌شناسی سازند تیرگان در آب‌دهی چاه‌های آب در شمال و شرق بجنورد

فیروز شکیبا، دانشجوی دکتری هیدروژئولوژی، گروه زمین‌شناسی دانشکده علوم زمین، دانشگاه صنعتی شاهرود، ایران
غلامحسین کرمی، دانشیار، گروه زمین‌شناسی دانشکده علوم زمین، دانشگاه صنعتی شاهرود، شاهرود، ایران
عزیزالله طاهری، استاد، گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده
به‌منظور تأمین آب آشامیدنی و صنعتی، چاه‌های متعددی در حوضه کپه‌داغ حفر و بهره‌برداری شده‌اند. هشت‌حلقه از این چاه‌ها برای صنایع و دو حلقه برای آب آشامیدنی در شرق و شمال شرق بجنورد و در سازند آهکی تیرگان حفر شده‌اند. برای آب‌دهی این چاه‌ها نیازمندی به ارتباط معناداری بین چینه‌شناسی و آب‌دهی چاه‌ها با اندازه‌گیری حفر شده‌اند. در مقایسه با چاه‌های شمال و شرق بجنورد، آب‌دهی بیشتری دارد. برای بررسی دقیق‌تر وضعیت چینه‌شناسی منطقه، تراوا و ناتراوا در این منطقه حفر شده و به‌وسیله سازند تیرگان فشرده می‌شونند. چاه‌های حفر شده در ناحیه تراوا به‌ویژه در سازند آهکی بالا‌ترین ارتفاع را دارند، اگرچه تا دو برابر عمیق‌تر از چاه‌های تراوا نیستند. تراوا و ناتراوا در این منطقه با نام‌های چاه‌های ظهیری در شرق، هیدرواستراتیگرافی آن‌ها تصریح شده و به‌وسیله چکیده گزارش در این مقاله ارائه شده است.

واژه‌های کلیدی: ارتفاع، چاه‌های تراوا، تراوا، ناتراوا، تراوا، آهکی، آهکی، سازند، تراوا، ناتراوا، هیدرواستراتیگرافی
نمونه مقدمه ایران سرزمینی خشک و کمپاران است و آب کشور در همه مصرف‌ها و استحکامات سیاسی به آب زیستی‌انهای آب‌توجهی‌داده‌نامه‌ها به آب‌توجهی‌انهای آب‌توجهی‌دار از چنین ماهیت‌ها از آب‌توجهی‌تعریفی‌سیستم‌های آب‌توجهی‌دار و شبه آب‌توجهی‌دار است. یا آب‌توجهی‌تشکیل‌دهنده و نیز در عوارض باران‌های آب‌توجهی‌دار و شبه آب‌توجهی‌دار گزارش (Schwartz and Zhang 2003) در آب‌توجهی‌دار شده‌است.
بررسی‌های چینه‌شناسی سازندنهای آهنی شامل تجزیه و تحلیل محیط رسوبی دریاچه آنها نیز می‌شود؛ زیرا بیشتر سندنهای کربناتی در پایت فرم‌هایی تشکیل می‌شوند که در محدوده وسیعی گسترشده‌اند. در محیط‌های رسوبی، کم‌بین‌دهنده رخ‌های مرتفعی شامل سایه‌های سراب‌پایین، پی‌نیابدال، تبخیری، پتالقی، ریف و شب قاره‌ای برای تشکیل سندنهای کربناتی شامل‌شدن‌اند. حد انتقال بین ریف تا شب قاره‌ای با رخ‌های آهن ضخیم‌یا مترادف است و در این مناطق،

(LeGrand and Stringfold 1966)

در شرایط عبور جریان آب‌زیرزمینی در عرض لایه‌بندی امکان دارد که تفاوت هدایت هیدرولیکی کم، لایه‌های ناتراوا ضخامت و یا درجۀ گسل‌خوردگی شدید باشد، ریف یا پایین‌تر: جریان آب‌زیرزمینی در امتداد لایه‌بندی هنگامی امکان‌دارد که تفاوت هدایت هیدرولیکی زیاد باشد، لایه‌های ناتراوا ضخامت و یا درجۀ گسل‌خوردگی کم باشد (Goldscheider 2005)

(343x255) Strati graphic flow control

(333x255) goldscheider 2005

با مطالعه توزیع‌های این‌گونه و شیب‌های گردش آب در سازندنهای آهنی در جنوب آمریکا، آنها را به‌صورت جدید تفسیر کرده‌اند: بخش 1- آهن‌های نزدیک سطح زمین که سطح آب زیرزمینی داخل این آهن‌ها شکل‌گیرد و آب ناشی از پارش به‌شکل عمودی به سطح آب‌زیرزمینی می‌رسد و سپس به‌طور جانبه به‌سمت رودخانه (پایین‌دم) حرکت می‌کند.

(54x223) گراند و استرینگفولد (1966)

با مطالعه توزیع‌های این‌گونه و شیب‌های گردش آب در سازندنهای آهنی در جنوب آمریکا، آنها را به‌صورت جدید تفسیر کرده‌اند: بخش 1- آهن‌های نزدیک سطح زمین که سطح آب زیرزمینی داخل این آهن‌ها شکل‌گیرد و آب ناشی از پارش به‌شکل عمودی به سطح آب‌زیرزمینی می‌رسد و سپس به‌طور جانبه به‌سمت رودخانه (پایین‌دم) حرکت می‌کند.

(54x223) گراند و استرینگفولد (1966)

با مطالعه توزیع‌های این‌گونه و شیب‌های گردش آب در سازندنهای آهنی در جنوب آمریکا، آنها را به‌صورت جدید تفسیر کرده‌اند: بخش 1- آهن‌های نزدیک سطح زمین که سطح آب زیرزمینی داخل این آهن‌ها شکل‌گیرد و آب ناشی از پارش به‌شکل عمودی به سطح آب‌زیرزمینی می‌رسد و سپس به‌طور جانبه به‌سمت رودخانه (پایین‌دم) حرکت می‌کند.

(54x223) گراند و استرینگفولد (1966)

با مطالعه توزیع‌های این‌گونه و شیب‌های گردش آب در سازندنهای آهنی در جنوب آمریکا، آنها را به‌صورت جدید تفسیر کرده‌اند: بخش 1- آهن‌های نزدیک سطح زمین که سطح آب زیرزمینی داخل این آهن‌ها شکل‌گیرد و آب ناشی از پارش به‌شکل عمودی به سطح آب‌زیرزمینی می‌رسد و سپس به‌طور جانبه به‌سمت رودخانه (پایین‌دم) حرکت می‌کند.

(54x223) گراند و استرینگفولد (1966)

با مطالعه توزیع‌های این‌گونه و شیب‌های گردش آب در سازندنهای آهنی در جنوب آمریکا، آنها را به‌صورت جدید تفسیر کرده‌اند: بخش 1- آهن‌های نزدیک سطح زمین که سطح آب زیرزمینی داخل این آهن‌ها شکل‌گیرد و آب ناشی از پارش به‌شکل عمودی به سطح آب‌زیرزمینی می‌رسد و سپس به‌طور جانبه به‌سمت رودخانه (پایین‌دم) حرکت می‌کند.

(54x223) گراند و استرینگفولد (1966)
پیچیدگی جریان، غیرهم‌روندی و دینامیک‌های از مهم‌ترین آنهای است. این یوگریک طبق نظر هاگر و همکاران (Flugel et al 1994) به سه اصل جنبش‌سازی، یعنی آبی‌ساختار و شرایط زمین‌فلزی بستگی دارند و در بین آنها، چهارشیبی شامل ضخامت هر انتهای میکرو، ضخامت‌های غیرآهکی، نوع آهک‌بندی (نازک‌تر یا ثابت‌آهکی) در جریان خلش و یافته‌های آهکی (خالص، ماسهای، سیلی، رس‌داد و سیلیسی) و با پوشانه‌ای است.

نام‌ها (Palmer 1986) با بررسی کوه‌های ملوت در کارست‌های ایالت کنتیکا آمریکا نشان داد ارتباط بیشتری بین توسه‌گذارهای غار با انتهای مشخص و وجود دارد. است. و با استر گذاری در یک فاقد چهارشیبی قرار دارد.

نداشت‌شناخت کافی از پیچیدگی‌های چهارشیبی مانع جدی در اکتشاف منابع آب کارستی ایجاد می‌کند. در شمال غربی آریزونا آمریکا، در یک تولید روسی، تونر (Tweeter 1962) قرار دارد و این در سان‌دی‌تاون، ساندی‌های آهکی تداخل بین انتخاب دارد و در برخی مناطق هم در بعلا و هم در بالا ساندی آهکی قرار می‌گیرد. نداشت‌شناخت دقت چهارشیبی از این ارتباط سبب شده است تبدیل به حفایرها می‌باشد برخورد به یک‌گذاری نقطه‌ای شوند؛ حال آنکه آهکی می‌تواند سطحی وجود داشته است و پیچیدگی‌های مختلف از این سطحی پس از یافته‌هایی نیز از این پردازه به لایه‌ای که بی‌پی از آهکی دارای آب برخورد می‌کرد (Huntoon 1975) در هیدروژئولوژی کارست، حتی بین آهک‌های مختلف تیز تفاوت قابل فهمی ندارند؛ به‌طوری که آهک‌هایی با تغییر خالصیت زیاد ممکن است کاراکتر انتهایی با تغییر حلال‌سازی کم قرار گیرند و با تغییر انتخاب دقیقه استوانه‌سازی می‌تواند، خلاصه‌ای از شکم‌گذاری پس از انتهای آهکی و میزان بازدید شکم‌گذاری اهمیت سی‌باری دارد؛ زیرا این تفاوت به تأثیر مستقیم بر میزان تراوایی هر سان‌دی‌تاون دارند (LeGrand and Stringfold 1971) در
بررسی نقشه‌های جغرافیایی کرتاسه توسط Afshar-harb (1994) نشان می‌دهد که منطقه آغاز کرتاسه از نوع آواره‌های سرخ‌رنگی به نام «سازند شوریچه»، هستند که در محیط‌های مردابی، دشت ساحلی، دلتا و یا محیط سیاهی، به شکل انسجامی رشد می‌کنند. محدوده مطالعه، موقعیت چاه‌ها و نقشه‌های متعدد شیب‌ها و منحنی‌های منطقه که شامل سازند‌های آهکی و مارنی مربوط به کرتاسه است، ساختار تانکسبن و ناوندی و گسل‌هایی که محور چاه‌ها را یافته‌اند، دیده می‌شوند (برگرفته از نقشه‌های 1:50000 زمین‌شناسی شهر بجنورد، انتشارات سازمان زمین‌شناسی کشور).

اطلاعات حاصل از چاه‌های حفاری شده در منطقه شامل سازند‌های سبز و سبز‌哈尔ی، با کارایی‌های مختلف مانند گیاه‌ای، پتانسیل خودرو، مقاومت الکتریکی، اطلاعات سطح آب و نوسانات آن هنگام حفاری، قابلیت آب‌دهی، آفت و اتفاق چندساله، شبیه‌پیش‌بینی‌های اطراف چاه‌ها نیز بررسی شده‌اند. لوله‌های غیرهصفحه‌ای با تکنیک‌های حفاری و داده‌های حاصل از چاه‌های پایان‌های تجزیه و تحلیل شده‌اند. نیم‌رخ‌های زمین‌شناسی اطراف هریک از چاه‌ها ترسیم و منطقه‌های نفوذ کرده‌اند.

زمین‌شناسی زون ساختاری کی‌داغ

زون ساختاری کی‌داغ در شمال شرق ایران قرار دارد و عمداً شامل سازند‌های رسوبی مزوزوئیک و سنوزوئیک است.
مرجع این سازند در جنوب غربی روسیه جوزک (شرق کیهاد) قرار دارد (Aghanabati 2004). سازند تیرگان از سنگ‌های سیستر سیستم نیز تاریخی و زمستانی بنا می‌باشد. ناحیه‌های اندازه‌گیری از سنگ‌های مارنی مارنی و شیل اهنکی تشکیل شده است. بر اساس نقشه‌های ژئومورفیکی ۱:۵۰۰۰۰۰ چهارگوش بجنورد پایه سازند تیرگان گسترش و سبیعی در منطقه مطالعه‌شده دارد. شکل ۳ تصویر ماهواره‌ای این کوه باهمستی را نشان می‌دهد. نتایج ویژه یا قبایل و سختی سنگ‌های سیستم نیز تاریخی است این سازند از واحدهای جهان‌سازی بین دوی‌های امین که زمان سازند تیرگان در منطقه مطالعه‌شده و نهشت‌های سنگی مارنی سرچشمه به‌شکل‌های شیلی‌های سنگی تیرگان باشد.

شکل سازند تیرگان در منطقه مطالعه‌شده دختر یا به فاصله منطقه‌های عملی از این سازند شکل گرفته است. ساختار سازند تیرگان متشکل از سنگ‌های سیستم نیز تاریخی است که پایه ای تخته‌های سازند تیرگان در مرکز ناحیه‌های به چشم می‌خورد و در بخش‌های تنها نمای سازند تیرگان به‌جای مانده است. اندازه‌ای تناوبی، گسل‌ها این ساختار‌های تاکیدی ناودیسی را به‌شكل عرضی دارند. در منطقه حاضر، ناحیه به‌نمایه حداکثر ۵۱۰ متر اندازه می‌گیرد و نموداری شد و در نتیجه، ناحیه تیرگان را می‌توان به‌شکل واحدهای سنگی آهنکی، مارنی مارنی، سنگ‌های آهنکی، و سنگ‌های آهنکی از مرکز به‌طرفی کرد (شکل ۴).
بررسی نقش چینه‌شناسی سازند تیرگان در آب‌های چشمه‌ای آب در شمال و شرق بجنورد

شکل ۲ - بررسی چینه‌شناسی مقطع اندازه‌گیری شده‌ای با‌پایه‌ی واحد‌های سنگی تفکیک‌کننده

واحد سنگی آهک پایینی (A = L-lmst) شامل حدود ۱۱۵ متر آهک تیزی و آهک ماسه‌ای، در قاعده‌ی قرمز‌رنگ و پاپرسااب‌های سازند تیرگان در آب‌های چشمه‌ای آب در شمال و شرق بجنورد
گرینستون (الید، باپوکلاس، انتراکلاست گرینستون) است. در مقاطع نازک تپه‌شده، وجوه ذرات ریز کوارتز در منطق آهک نشان می‌دهد. در بخشی محیطی، ساوانه تیرگان از رسوبات آواری خشکی تأثیر پذیرفته است (شکل 5). شماره‌های 3 و 4) و بر اساس سنجشی می‌تواند نقش لایه‌ای نازک پاردازش شده، در بخش بالایی گرینستون در بخش‌های بالا و پایین در شناسایی، شماره‌های 47 و 1، بهار 8931 (دپوی، اپی‌نگ‌ون، باپوکلاست، گرینستون) نمونه‌های شماره‌های 9 و 7 در ناحیه‌های نازک و بایوکلاست و گرینستون است. (شکل 5.)

شکل 5- مقاطع نازک تپه‌شده از واحد‌های سنگی ساوانه تیرگان در مقطع یابوکلاست (دپوی، اپی‌نگ‌ون، باپوکلاست، گرینستون) نمونه‌ها برداشت شده از واحد سنگی اهنگ شده، با یکدیگر تپه‌شده دارند.

(1) باپوکلاست: انتراکلاست گرینستون; نمونه‌ها برداشت شده از واحد سنگی اهنگ شده، با یکدیگر تپه‌شده دارند. (2) باپوکلاست: انتراکلاست گرینستون; نمونه‌ها برداشت شده از واحد سنگی اهنگ شده، با یکدیگر تپه‌شده دارند. (3) باپوکلاست: انتراکلاست گرینستون; نمونه‌ها برداشت شده از واحد سنگی اهنگ شده، با یکدیگر تپه‌شده دارند. (4) باپوکلاست: انتراکلاست گرینستون; نمونه‌ها برداشت شده از واحد سنگی اهنگ شده، با یکدیگر تپه‌شده دارند. (5) باپوکلاست: انتراکلاست گرینستون; نمونه‌ها برداشت شده از واحد سنگی اهنگ شده، با یکدیگر تپه‌شده دارند. (6) باپوکلاست: انتراکلاست گرینستون; نمونه‌ها برداشت شده از واحد سنگی اهنگ شده، با یکدیگر تپه‌شده دارند.

شکل 5- مقاطع نازک تپه‌شده از واحد‌های سنگی ساوانه تیرگان در مقطع یابوکلاست (دپوی، اپی‌نگ‌ون، باپوکلاست، گرینستون) نمونه‌ها برداشت شده از واحد سنگی اهنگ شده، با یکدیگر تپه‌شده دارند.
قرار دارد و مانع نفوذ جریان به لاشه پایین آهک می‌شود.

واحده سنگی آهک-ماراتی بالایی (حدود E = Up Lmst) حدود 85 متر شالی‌رخ لایه مارنتی، مارنتی آهکی و میان‌لایه‌های آهکی است و بر اساس نمونه‌برداری شال و کستون نا به کستون (انتراکلاست‌پکستون، باکلاست‌پکستون) است (شکل 6 شماره‌های 7 و 8). بر اساس سنگ‌شناسی و محل قرارگیری، این لاشه نیز نفس لایه‌های تراواپی کم را بارز می‌کند. این واحد سنگی در بالای واحد سنگی آهک میانی (D = Up M-Lmst) آهک‌ضخامتی‌سازند تیرگان در منطقه تشکیل می‌دهد. در بیشتر منطقه این واحد سنگی ضخیم‌لاشه و انرژی ساختاری در معرض انحلال تاریکه شده است. ساختار تاق‌پدیده ناودیسی در منطقه افزایش درجه خلوط آهک.

شکل 6- مقاطع نازک به‌شکل از واحد‌های سنگ‌سازند تیرگان در مقطع پاباموسی: 7- (انتراکلاست، باکلاست‌پکستون). 8- (باکلاست‌پکستون): نموده‌ها برداشت شده از واحد سنگی-مارنتی بالایی سازند تیرگان. واحد سنگی (D) حاوی فسیل‌های پاچیک اربیتولین و باکلاست و خمیره برداشت محیط کوانژی-حوای خوده‌ای فسیل. 9- (انتراکلاست، باکلاست‌پکستون). 10- (البیم) باکلاست، پلوئید‌پکستون: نموده‌ها برداشت شده از واحد سنگی آهک ضخیم‌لاشه بالایی (E) محیط پرانرژی و سیمان اسپارایت و انرژی درجه خلوط آهک.

واحد سنگی آهک-‌ماراتی بالایی (حدود E = Up Lmst) حدود 85 متر شالی‌رخ لایه مارنتی، مارنتی آهکی و میان‌لایه‌های آهکی است و بر اساس نمونه‌برداری شال و کستون نا به کستون (انتراکلاست‌پکستون، باکلاست‌پکستون) است (شکل 6 شماره‌های 7 و 8). بر اساس سنگ‌شناسی و محل قرارگیری، این لاشه نیز نفس لایه‌های تراواپی کم را بارز می‌کند. این واحد سنگی در بالای واحد سنگی آهک میانی (D = Up M-Lmst) آهک‌ضخامتی‌سازند تیرگان در منطقه تشکیل می‌دهد. در بیشتر منطقه این واحد سنگی ضخیم‌لاشه و انرژی ساختاری در معرض انحلال تاریکه شده است. ساختار تاق‌پدیده ناودیسی در منطقه افزایش درجه خلوط آهک.
به سبب نفوذ‌های‌پایین‌دیری، نقش مالاژ جزیره‌ای را دارد؛ بنابراین، توسعه انتقال در این واحد سنگی بیشتر است. شکل ۷ به منظور تطابق سنگ‌های شناسی جزیره‌ای در مرتفعه‌ای با سنگ‌های شناسی مقطع یاسمانی و ترسیم شده است.

شکل ۷- لاگ‌زمن‌هایی به هشت حلقه (از هجده حلقه) جزیره که بر اساس لاگ‌های زئوفیزیکی و گزارش‌های خصوصی خرداد دیده شده. ترسیم و اصلاح شده است. تطابق سنگ‌های شناسی جزیره بر اساس اندادگی‌های مرتفعه محل حفر جزیره از سطح بالایی سازند تیرگان و اصلاح شیب توده‌گرانی و شیب لایه‌ی ناپایداری با توجه به شیب‌های منطقه‌ای انجام شده و درست‌کردن، با مقاطع بابی، پوش‌اطلاقوی داده شده است.

از بین دو حلقه‌ی جزیره، هشت حلقه‌ی خاص کلیت لاگ‌های W01 و W02 تقریباً تزییدک به سطح لایه‌ی بین‌زده حفره‌ای شده‌اند. تنویین‌های از واحدهای سنگی آهکی عبور کنند و درحقیقت، بیشتر درون یک لایه‌ی حفره‌ای شده‌اند.

منطقه‌ی بین و ارتباط آپ‌دوند جزیره با جزیره‌های شناسی سازنده تیرگان

ارضی‌های بی‌نام، سال سی و پنجم، شماره پی Brigham, 1398، شماره اول، بهار 8931

رضا‌پناه چنین‌گزاری و رسوپ‌شناسی، سال سی و پنجم، شماره پی Brigham, 1398، شماره اول، بهار 8931

هم‌دست‌کنی‌کت که در محور‌های‌نافذ‌دیده‌ها، سازند تیرگان در فرضی‌سازی‌شدیدی‌یافته و از بین رفته است و واحدهای سنگی آهک بالایی (E) سازند تیرگان در زمینه‌های نفوذی ناشی از بارندگی قرار گرفته‌اند. زیر لایه‌ای آهک بالایی، واحدهای سنگی آهک بالایی-مارنی بالایی (B) سازند تیرگان قرار دارند.
بررسی دهی آب‌دهی و تغییرات آن طی ۲۰ سال نشان می‌دهد سه حلقه‌چاه W06، W07 و W08 بیشترین آب‌دهی و کمترین تغییرات را در طی این دوره زمانی داشته‌اند؛ این دو حلقه چاه در انتهای دستگاه آهن بازی حفر‌شده‌اند. ارگچه چاه‌های دیگر تا دو برای چاه‌های یادشده عمق دارند، آب‌دهی آنها به‌مراتب نا بیش از ۵۰ درصد کمتر است (جدول ۱). در جدول ۱ منطقه‌بندی با استفاده از اطلاعات‌ده حلقه‌بیان شده است.

جدول ۱- میزان و تغییرات آب‌دهی چاه‌های حفر شده در سازند تیرگان طی ۲۰ سال

| شماره چاه | عمق (متر) | کاهش آب‌دهی طی مدت ۲۰ سال | کاهش آب‌دهی طی esper (میلی‌لیتری) | از سال ۲۰۱۲-۲۰۱۴ | از سال ۲۰۱۴-۲۰۱۸ | از سال ۲۰۱۸-۲۰۲۱
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>W01</td>
<td>۲۵۰</td>
<td>۲۵</td>
<td>۱۲</td>
<td>۵۵</td>
<td>۴۵</td>
<td>۵۶</td>
</tr>
<tr>
<td>W02</td>
<td>۲۰۱</td>
<td>۲۵</td>
<td>۱۳</td>
<td>۵۵</td>
<td>۴۵</td>
<td>۵۶</td>
</tr>
<tr>
<td>W03</td>
<td>۲۰۱</td>
<td>۳۰</td>
<td>۱۲</td>
<td>۵۵</td>
<td>۴۵</td>
<td>۵۶</td>
</tr>
<tr>
<td>W04</td>
<td>۲۰۰</td>
<td>۳۰</td>
<td>۱۲</td>
<td>۵۵</td>
<td>۴۵</td>
<td>۵۶</td>
</tr>
<tr>
<td>W05</td>
<td>۲۰۰</td>
<td>۳۰</td>
<td>۱۲</td>
<td>۵۵</td>
<td>۴۵</td>
<td>۵۶</td>
</tr>
<tr>
<td>W06</td>
<td>۱۵۰</td>
<td>۳۰</td>
<td>۱۲</td>
<td>۵۵</td>
<td>۴۵</td>
<td>۵۶</td>
</tr>
<tr>
<td>W07</td>
<td>۱۲۰</td>
<td>۶۰</td>
<td>۶۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>W08</td>
<td>۸۰</td>
<td>۶۰</td>
<td>۶۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>W09</td>
<td>۸۰</td>
<td>۶۰</td>
<td>۶۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>W10</td>
<td>۱۴۰</td>
<td>۱۰۱</td>
<td>۱۰۱</td>
<td>۱۰۱</td>
<td>۱۰۱</td>
<td>۱۰۱</td>
</tr>
</tbody>
</table>

است؛ از سویی بعلت شبیه‌سازی زیاد نجف‌آباد و به‌دلیل ناوگان‌دهی حفری‌کننده واگذاری به‌طور مداوم در حلقه‌های چاه‌های حفاری‌کننده، دچار کاهش‌آب‌دهی و تغییرات آن طی ۲۰ سال نقش عمده داشته است (شکل ۸A). در این محل، دو حلقه‌چاه به‌عنوان ۲۵۰ و ۲۰۱ متری در منطقه حلقه‌چاه W06 و W07. در منطقه حلقه‌چاه W06 و W07، شرکت پتروشیمی و شرکت آب و فاضلاب روسی‌تی مربوط است. چاه W06 ۱۵۰ متری و W05 و W04 ۲۵۰ و ۲۰۱ متری و همچنین حلقه‌های W02 و W03 در منطقه‌های حلقه‌کننده از سویی مشابه و در حال حاضر شرکت‌های پتروشیمی و شرکت‌های آب و فاضلاب روسی‌تی مربوط است. چاه W06 ۱۵۰ متری و W05 و W04 ۲۵۰ و ۲۰۱ متری و همچنین حلقه‌های W02 و W03 در منطقه‌های حلقه‌کننده از سویی مشابه و در حال حاضر شرکت‌های پتروشیمی و شرکت‌های آب و فاضلاب روسی‌تی مربوط است. چاه W06 ۱۵۰ متری و W05 و W04 ۲۵۰ و ۲۰۱ متری و همچنین حلقه‌های W02 و W03 در منطقه‌های حلقه‌کننده از سویی مشابه و در حال حاضر شرکت‌های پتروشیمی و شرکت‌های آب و فاضلاب روسی‌تی مربوط است. چاه W06 ۱۵۰ متری و W05 و W04 ۲۵۰ و ۲۰۱ متری و همچنین حلقه‌های W02 و W03 در منطقه‌های حلقه‌کننده از سویی مشابه و در حال حاضر شرکت‌های پتروشیمی و شرکت‌های آب و فاضلاب روسی‌تی مربوط است. چاه W06 ۱۵۰ متری و W05 و W04 ۲۵۰ و ۲۰۱ متری و همچنین حلقه‌های W02 و W03 در منطقه‌های حلقه‌کننده از سویی مشابه و در حال حاضر شرکت‌های پتروشیمی و شرکت‌های آب و فاضلاب روسی‌تی مربوط است. چاه W06 ۱۵۰ متری و W05 و W04 ۲۵۰ و ۲۰۱ متری و همچنین حلقه‌های W02 و W03 در منطقه‌های حلقه‌کننده از سویی مشابه و در حال حاضر شرکت‌های پتروشیمی و شرکت‌های آب و فاضلاب روسی‌تی مربوط است. چاه W06 ۱۵۰ متری و W05 و W04 ۲۵۰ و ۲۰۱ متری و همچنین حلقه‌های W02 و W03 در منطقه‌های حلقه‌کننده از سویی مشابه و در حال حاضر شرکت‌های پتروشیمی و شرکت‌های آب و فاضلاب روسی‌تی مربوط است. چاه W06 ۱۵۰ متری و W05 و W04 ۲۵۰ و ۲۰۱ متری و همچنین حلقه‌های W02 و W03 در منطقه‌های حلقه‌کننده از سویی مشابه و در حال حاضر شرکت‌های پتروشیمی و شرکت‌های آب و فاضلاب روسی‌تی مربوط است. چاه W06 ۱۵۰ متری و W05 و W04 ۲۵۰ و ۲۰۱ متری و همچنین حلقه‌های W02 و W03 در منطقе...
134 متر مستقبلاً روی آهک تیرگان حفاری شده‌اند. آب‌دهی این دو حلقه چاه کمتر از دو حلقه چاه منطقه‌ی کارست است. اطلاعات لاغرها و گزارش‌های حفاری نشان‌دهنده‌ی درجه و شکاف کمتر و آهک متراک می‌باشد به منظور اینکه استحکام شناسایی‌یاً مراحل فنی حفاری چاه بحدود اندازه‌گیری کننده مشابه، آب‌دهی در این دو حلقه چاه از سیال‌های متعارف زیاد برای تداوم آب‌دهی است؛ این مطلب، عملیات شناسایی نیاز به توسیع مناسب کارست در واحد سانگی‌آهک بالایی است؛ هرچند در جابجایی و مناسب‌سازی فنی حفاری چاه دقت لازم نشده است. آب‌دهی در این دو حلقه چاه به‌حیث باید و با توجه به سبک‌‌ها، آب‌دهی از دسترس خارج می‌شده است (شکل D).

تفصیل‌های هیدروژئولوژی سازند تیرگان

با توجه به آنجایی از اطلاعات شمال‌گان، داده‌های بررسی سنجش‌نامه نمونه‌های برداشته‌شده و زمین‌شناسی و هیدروژئولوژی و آب‌دهی چاه‌ها و نیم‌مانند آنها و بررسی لاغرها و گزارش‌های حفاری چاه است. راههای اتمام نشان‌داده که تیرگان را با سطح‌های ترازویی مختلف تقسیم کرد. به‌طوری که سازند تیرگان را به این دو واحد سنجی کارستی یک‌نحوی در نظر گرفت، بنابراین در داخل آن واحد‌های سنجی مختلف رفتار هیدروژئولوژیکی متفاوتی دارند:

1. به‌سبب وضعیت‌های ترازویی، توسعاً کارست‌ساز در دو واحد‌ها بسیار منتفی است که در شکل 9 نشان داده است. همان‌طور که در شکل 9 نشان داده است، واحد‌های ترازویی آهک ترازویی در نظر گرفته شده‌اند. توسعاً سازند تیرگان در هردو از واحد‌های سنجی ترازویی عایق‌های و این نهاد با وضعیت‌های ترازویی در نظر گرفته شده‌اند. توسعاً کارست‌ساز در هردو از واحد‌های سنجی ترازویی به‌سبک ترازویی قرار گرفته است. به‌طوری که نشان‌داده‌ها پراهمیت نشانده تر جلوه‌ی منفی کرد. واحد سنجی آهک بالایی به‌سبب موقت‌گیری‌های چینه‌شناسی زیر سانند.

2. به‌سبب وضعیت‌های ترازویی، توسعاً کارست‌ساز در دو واحد‌ها بسیار معنی‌دار است. همان‌طور که در شکل 9 نشان داده است، واحد‌های ترازویی آهک ترازویی در نظر گرفته شده‌اند. توسعاً سازند تیرگان در هردو از واحد‌های سنجی ترازویی به‌سبب قرار گرفته است. به‌طوری که نشان‌داده‌ها پراهمیت نشانده تر جلوه‌ی منفی کرد. واحد سنجی آهک بالایی به‌سبب موقت‌گیری‌های چینه‌شناسی زیر سانند.

چاه‌های منطقه تجف‌آباد یک

در منطقه تجف‌آباد، دو جفت چاه حفاری شده است و چون میزان آب‌دهی در جفت چاه ترکیبی به هم است، هر دو حلقه باهم برعهده‌سی و در منطقه بک ۱۵۰ منتقل شدند. در منطقه بک، دو حلقه چاه W05 و W08 به ترتیب با عمق ۱۳۹ و ۱۴۰ متر حفاری شده‌اند. نمونه‌برداری از خرده‌های حفاری انجام‌شده و بررسی پیشرفته حفاری در گزارش‌های حفاری ادیم است؛ به طوری که در خطه‌هایی که درجه و شکل‌گیری ساختاری، روي لاک زمین‌شناسی نشان داده شده‌اند. لاغرها به دست آمده از سطح زمین‌شناسی نشان داده شده‌اند. لاغرها به دست آمده از سطح زمین با عمق ۲۰ متری چاه کوبه وجود لایه‌هایی از ساندز سرچشمه است و از اعماق ۲۰ متری به بعد، آهک متراکم تیرگان قرار دارد. پایه‌های گزارش حفاری چاه‌ها از عمق ۴۰ تا ۷۰ متری به دزه و شکل‌گیری حاوی آب پر رختیده کره است.

پایه‌های گزارش حفاری چاه‌ها از عمق ۴۰ تا ۷۰ متری به دزه و شکل‌گیری حاوی آب پر رختیده کره است. و از اعماق ۷۰ تا ۹۰ متری آهک متراکم و بیدو درد و شکاف وجود دارد. در این دو حلقه چاه قرار گرفته و آب‌دهی بزرگ آنها و کاهش نیافته آن طی ۲۰ متری به بعد به‌طور مداوم. در این نقطه دارد (شکل C).

چاه‌های منطقه تجف‌آباد ۲

دو حلقه چاه شماره‌ی W07 و W10 به ترتیب با عمق ۱۳۹ و ۱۴۰ متر حفاری شده‌اند.
بررسی نقش چینه‌نشینی سازند تیرگان در آب‌دهی جنگل‌های شمال و شرق بجنورد

تیرگان که شامل تشاسیابی از مارن و آهک است، در توسعة کارست سایر واحدهای درون سازند تیرگان نقش اساسی داشته است. زیر واحدهای مارنی به سبب سنگ‌نشانی، نقش لاپی‌ناتارا را داشته و به ویژه در واحدهای سنگی آهک پایینی منبع توسعت‌یافته‌کارست شده‌اند. سرچشمه قرار گرفته و در بیشتر مناطق که‌داه و ازجمله منطقه مطالعه‌شده سازند سرچشمه به سعت‌فرایش از بین رفته و این واحد سنگی آهکی در معرض بارندگی مستقیم قرار گرفته است؛ از سویی به سمت خلوق زیاد، بسیار بیشتر از سایر واحدهای سنگی آهکی درون سازند تیرگان در معرض انحلال واقع شده است. توالی چینه‌نشینی سازند

شکل 8-برش‌های چینه‌نشینی سازند تیرگان در محل حفر چاه‌ها و شیب‌های فارارکه‌ی چاه‌ها نسبت به سطح بالایی به‌سازند تیرگان: A. چاه‌های منطقه سیبید، جاده‌ها نسبت به موازات‌هایی حفر شده‌اند و از لاپی‌ناتارا و مارنی آهکی عبور کرده‌اند. B. چاه‌های کاریک‌کاری خون‌هایی از لاپی‌ناتارا و آهکی مارنی حفر شده‌اند. C. چاه‌های تجف‌آباد یک جاده‌ها با عمق کم در لاپی‌ناتارا ضخیم آهکی حفر شده و کارست توسعت‌یافته است. D. چاه‌های نجف‌آباد دو جاده‌ها در لاپی‌ناتارا ضخیم‌لاهی حفر شده‌اند. اما لاپی‌ناتارا محصورکننده بالایی از بین رفته است.
بیان و نتیجه

اطلاعات حاصل از ستون چین‌شناسی بایان‌موسی، اطلاعات جامعی از ستون چین‌شناسی شامل فاصله‌های خفی و آب‌دهی‌های شامل کاراکتریک قرار گرفتن و جای‌گیری واحد سنگی (A) واحد سنگی آهک (A)، واحد سنگی آهک بالایی (E)، واحد سنگی آهک‌شناوی (C)، واحد سنگی آهک‌پایین (A) و واحد سنگی آهک‌پایین (A) در این بررسی چین‌شناسی تفکیک شدند؛ تغییرات هرکه از این واحد‌های سنگی را می‌توان در منطقه مطالعه‌شده پاترخیص چین‌شناسی ساده و توانایی سیستماتیک دنبال کرد. ساختار ساده‌تری ناودهی نیز با ساختار ساده‌تری ناودهی نیز با شکل‌های بالاتری وک‌پایینی (A)، واحد سنگی آهک

شکل 9- تبدیل لیتو‌استراگرافی به هیدرو‌استراگرافی

(A) آهک پایینی
(C) آهک‌شناوی
(E) آهک بالایی
(B) آهک‌پایینی-مارنی
(D) آهک‌پایینی-مارنی

Karst Aquifer
Aquitard
Aquiclude
Karst Aquifer
Aquiclude
References

