The relation between glauconitization and calcite cementation with the relative sea level changes in the mixed silisiclastic- carbonate sediments of Aitamir Formation (Mid-Cretaceous), Kopet-Dagh basin

Authors

1 Ph.D. Student Ferdowsi University of Mashhad

2 Professor, Department of Geology, Ferdowsi University of Mashhad

Abstract

Two diagenetic processes of glauconitization and calcite cementation and relation those to sea level changes in the siliciclastic-carbonate sediments of the Aitamir Formation (Albian-Cenomanian) in Kopet-Dagh basin have studied. The lower sandstone unit consists of mainly sandstone intercalated with shale and limestone and the upper shale units are two major sediments of this formation. The sandstone of the lower unit based on composition and their relations with sea level change subdivided into two transgressive and regressive facies and in this relation, show different pathways of the diagenesis. In the transgressive facies display by high content of the shell remains, with development in diagenesis shows extensive cementation and a little compaction during burial stage.  In the regressive sandstone, characterized by little skeletal elements, display little calcite cements and high burial compaction. The glauconitic grains and calcite cementation in the Aitamir Formation concentrated in the transgressive facies and especially in the maximum flooding surface and transgresive surface. Whereas, in the regressive facies the glauconitic grains and calcite cementation is principally low. Moreover, the transgressive system tract and maximum flooding surface is characterized by mature and high mature glauconitic grains.    
 

Keywords


 
1-            افشار حرب، ع.، 1373، زمین شناسی کپه داغ: سازمان زمین شناسی کشور، طرح تدوین کتاب، 275 صفحه.
2-      آدابی، م.ح.، و ر.، عباسی، 1388، بررسی تاریخچه دیا‍‍ژنتیکی سازند داریان براساس مطالعات پتروگرافی و ژئوشیمیایی در کوه سیاه (شمال شرق شیراز) و چاه شماره 1 سبز پوشان: مجله علوم دانشگاه تهران، شماره 35، ص 53-75.
3-      شرفی، م.، 1388، چینه نگاری سکانسی و تفسیر تاریخچه رسوب گذاری سازند آیتامیر در شمال غرب شیروان و روستای بی بهره: پایان نامه کارشناسی ارشد،  دانشگاه فردوسی مشهد، 307 ص.
4-      شرفی، م.، م.، عاشوری، ا.، محبوبی، ر.، موسوی حرمی و م.، نجفی، 1388، چینه نگاری سکانسی سازند آیتامیر (آلبین- سنومانین) در ناودیس های شیخ و بی بهره غرب حوضه رسوبی کپه داغ: مجله علوم دانشگاه تهران شماره 35، ص 201-211.
5-      شرفی، م.، ا.، محبوبی، ر.، موسوی حرمی و م.، نجفی، 1390، کاربرد لایه های پرفسیل در تفسیر چینه نگاری سکانسی سازند آیتامیر در ناودیس های شیخ و بی بهره- باختر کپه داغ: فصلنامه زمین شناسی ایران شماره 17، ص 31-47.
6-             Alavi, M., H., Vaziri, K., Seyed-Emami and Y., Lasemi, 1997, The Triassic and associated rocks of the Nakhlak and Aghdarband areas in central and northeastern Iran as remnants of the southern Turanian active continental margin: Geological Society America Bulletin, v. 109; p. 1563-1575
7-             Amorosi, A., 1995, Glaucony and sequence stratigraphy: a conceptual framework of distribution in siliciclastic sequences: Journal of Sedimentary Research, v. 65, p. 419-425.
8-             Amorosi, A., 1997, Detecting compositional, spatial and temporal attributes of glaucony: a tool for provenance research: Sedimentary Geology, v. 109, p. 135-153.
9-             Amorosia, A., I., Sammartinoa, and F., Tateo, 2007, Evolution patterns of glaucony maturity: A mineralogical and geochemical approach, Deep-Sea Research II, v. 54; p. 1364-1374.
10-         Chafetz, H.S., 2007, Paragenesis of the Morgan Creek Limestone, Late Cambrian, central Texas: Constraints on the formation of glauconite, Deep-Sea Research II, v. 54, p. 1350-1363.
11-         Chang, S.S., Y.H., Shau M.K., Wang, C.T., Ku and P.N. Chiang, 2008, Mineralogy and occurrence of glauconite in central Taiwan: Applied Clay Science, v. 42, p. 74-80.
12-         El-ghali , M.A.K., H.,Mansurbeg, S., Morad , I., Al-Aasm and  K., Ramseyer, 2006, Distribution of diagenetic alterations in glaciogenic sandstones within a depositional facies and sequence stratigraphic framework: Evidence from the Upper Ordovician of the Murzuq Basin, SW Libya, Sedimentary Geology, v. 190, p. 323-351.
13-         El-ghali, M.A.K., H., Mansurbeg, S., Morad, I., Al-Aasm, K., Ramseyer, 2009, Distribution of diagenetic alterations in glaciogenic sandstones  within a depositional facies and sequence stratigraphic framework: Evidence from the Upper Ordovician of the Murzuq Basin, SW Libya: Sedimentary Geology, v. 190, p. 323-351.
14-         Golonka, J., 2004, Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic: Tectonophysics, v. 381, p. 235–273.
15-         Hadavi, H., and A., Poursmaiel, 2005, Investigation of the boundaries of Tirgan, Sarcheshmeh, Sanganeh, Aitamir and Abderaz Formations based on nannoplaktones in the Mashhad-Sarakhs Road (in Persian): Geological Society of Iran, v. 11, p. 1873-1881.
16-         Halal, O.A., 2008, Diagenesis and Reservoir-Quality Evolution of Paralic, Shallow BMarine and Fluvio-lacustrine Deposits, Links to Depositional Facies and Sequence Stratigraphy, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, v. 448, 65 pp.
17-         Harris, L.C. and B.M., Whiting, 2000, Sequence-stratigraphic significance of Miocene to Pliocene glauconite-rich layers, on- and offshore of the US Mid-Atlantic margin: Sedimentary Geology, v. 134, p. 129-147.
18-         Hesselbo, S.P., J.M., Huggett, 2001, Glaucony in ocean margin sequence stratigraphy (OligoceneePliocene, offshore New Jersey, U.S.A.; ODP LEG 174A): Journal of Sedimentary Research, v. 71, p. 599-607.
19-         Kelly, J.C. and J.A., Webb, 1999, The genesis of glaucony in the Oligo–Miocene Torquay group, southeastern Australia: petrographic and geochemical evidence: Sedimentary Geology, v. 125, p. 99-114.
20-         Ketzer, J. M., M., Holz, S., Morad, and I. S.,  Al-Aasm, 2003, Sequence stratigraphic distribution of diagenetic alterations in coal-bearing, paralic sandstones: evidence from the Rio Bonito Formation (early Permian), southern Brazil: Sedimentology, v. 50, p. 855-877.
21-         Kim, J.C., Y., Lee, and K., Hisada, 2007, Depositional and compositional controls on sandstone diagenesis, the Tetori Group (Middle Jurassic–Early Cretaceous), central Japan Sedimentary Geology, v. 195, p. 183-202.
22-         Kim, J.C., Y., Lee, 2004, Diagenesis of shallow marine sandstones, the Lower Ordovician Dongjeom Formation, Korea:
response to relative sea-level changes. Journal  of Asian Earth Sciences, v. 23,
p. 235-245.
23-         Dongjeom Formation, Korea: response to relative sea-level changes: Journal of Asian Earth Sciences, v. 23, p. 235-245.
24-         Kitamura, A., 1999, Glaucony and carbonate grains as indicators of the condensed section, Omma Formation, Japan: Sedimentary Geology, v. 122; p. 151-163.
25-         Mansurbega, H., S., Morada, A., Salemc, R., Marfild, M.A.K.,  El-ghalie, J.P., Nystuenf,  M.A., Cajad, A., Amorosig, D., Garciah, and A., La Iglesia, 2008, Diagenesis and reservoir quality evolution of palaeocene deep-water, marine sandstones, the Shetland-Faroes Basin, British continental shelf, Marine and Petroleum Geology, v. 25, p. 514-543.
26-         McCracken, S.R., J., Compton and K., Hicks, 1996, Sequence-stratigraphic significance of glaucony-rich lithofacies at Site 903, inMountain, G.G., Miller, K.G., Blum, P., Poag, C.W., Twitchell, D.C., Proceedings of the Ocean Drilling Program, Scientific Results, v. 150, p. 171-187.
27-         Morad, S., 1998, Carbonate cementation in sandstones: distribution patterns and geochemical evolution. In: Morad, S., (Ed.), Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution, International Association of Sedimentologists, Special Publication, v. 26, p. 1-26
28-         Pasquini, C., A., Lualdi and P., Vercesi, 2004, Depositional dynamics of glaucony-rich deposits in the Lower Cretaceous of Nice arc, Southeast France: Cretaceous Research, v. 25,  p. 179-189.
29-         Sharafi, M., M., Ashuri, A., Mahboubi, S.R., Harami, in press, Stratigraphic application of Thalassinoidesichnofabric in delineating sequence stratigraphic surfaces (Mid-Cretaceous), Kopet-Dagh Basin, northeastern Iran. Palaeoworld. http://dx.doi.org/ 10.1016/ j.palwor.2012.06.001.  
30-         South, D.L., and M.R., Talbot, 2000, The sequence stratigraphic framework of carbonate diagenesis within transgressive fan-delta deposits, Sant Llorenc Del Munt fan-delta complex, SE Ebro Basin, NE Spain: Sedimentary Geology, v.183, p. 179-198.
31-         Tucker, M.E. and V.P., Wright, 1991, Carbonate Sedimentology, Blackwell, Oxford 482pp.
32-         Varol, B., A., Ozguer, E., Kosun, S., İmamgolu, M., Danis, and T., Karakulluku, 2000, Depositional Environments and Sequence Stratigraphy of Glauconites of Western Black Sea region: Mineral Research Exploration Bulletin, v. 122, p. 1-21.
33-         Wigley, R., and J.S., Compton, 2007, Oligocene to Holocene glauconite–phosphorite grains from the Head of the Cape Canyon on the western margin of South Africa, Deep-Sea Research II, v. 54, p. 1375-1395.
34-         Wilmsen, M., F.T., Fürsich and J., Taheri, 2009, The Shemshak Group (Lower - Middle Jurassic) of the Binalud Mountains, NE Iran: stratigraphy, facies and geodynamic implications. In: Brunet, M.-F., Wilmsen, M. & Granath, J. (Eds), South Caspian to central Iran basins: Geological Society London, Special Publication, v. 312, p. 175-188.