Biostratigraphic correlation and foraminiferal associations of the Oligocene successions in Fars Basin

Document Type : Research Paper

Author

Abstract

The Oligocene-Miocene shallow marine limestone, Asmari Formation, from the Zagros Basin, SW Iran, constitutes one of the main hydrocarbon reservoirs in the world. This succession shows a variety of facies patterns and depositional architectures. Also these strata contain a rich fauna of planktonic and benthic foraminifera. Larger benthic foraminifera are considered to be good indicators of shallow marine environments. Distribution of this group in addition to other biogenic components (mollusk, echinoid, bryozoan, coral, corralinacean, brachiopod, worm tube, etc.) and sedimentary structure, along the stratigraphic sequence of the Asmari Formation is used in this research as a tool for introducing the biostratigraphic correlation and foraminiferal associations. In order to study the foraminiferal associations and biostratigraphic correlation of the Asmari Formation in the Fars Basin, four stratigraphic sections were selected, include: Shool, Kaftarak, Darengoon, and Noorabad sections. This study is based on more than 270 thin sections derived from surface outcrops.
According to the distribution of planktonic and benthic foraminifera, three assemblage zones were recognized I-Nummulites vascus-Nummulites fichteli, II- Lepidocyclina-Operculina-Ditrupa and, III-Archaias asmaricus/hensoni-Miogypsinoides complanatus.  The oldest recognized biozone (biozone no. I, which is determined according to the presence and absence of Nummulites spp.) is reported from Shool and Kaftarak sections. Biozone no.II is recognised at Noorabad Section and represents undifferentiated Rupelin-Chattian time. Biozone no.III which represents Chattian time is reported from Noorabad and Darengoon sections. The Asmari Formation is time equivalent to Oligocene-Miocene in different parts of the Zagros Basin.  The recognised biozones in the Fars Basin confirm the age of Rupelian onto Chattian for the Asmari Formation, in the study area.
Three foraminiferal associations are recognized in the investigated sections according to the test shape of the larger benthic foraminifera and sedimentary texture. The identified foraminiferal associations represent the middle and inner parts of a homoclinal ramp. The association no. 1 consists of planktonic foraminifera together with thin and thick tests of perforate larger benthic foraminifera. Perforate tests are apparent as nummulitid (Nummulites, Operculina and Heterostrgina) and lepidocyclinid (Eulepidina and Nephrolepidina). The association of planktonic foraminifera and thin and flat test of nummulitid and lepodocyclinid representing the deeper part (about 150 m) of the Asmari platform in the study area.  Increasing in the thickness ratio to the diameter of the test is the sign of proximal middle ramp. This foraminiferal association is presented thorough the Rupelian-Chattian time in the Noorabad Section and indicated salinity value of 34 to 40 psu. The shallowest depth (40 m) of the proximal middle ramp is coinciding with the presence of thick rotallid tests. The association no. 2 is composed of the mix of perforate and imperforate tests of larger foraminifera (Operculina, Heterostegina, Eulepidina, Nephrolepidina, Neorotalia, Sphaerogypsina, Planorbulina, Archaias, Peneroplis, Austrotrillina, Borelis, Triloculina, Praearchaias, Sivasina, and milliolid). This is formed in the semi-restricted lagoon in the inner ramp and is reported from the Noorabad Section (Rupelian-Chattian), Kaftarak Section (Rupelian) and Darengoon Section (Chattian). The presence of the Borelis genus confirms the salinity value of 40-50 psu for this association. High diversity imperforate tests of larger foraminifera are the main maker of the third association. This indicates the hypersaline-restricted lagoon and salinity value higher than 50 psu. The association no. 3 is the sign of shallowest depth of sedimentary basin. The dominance of Peneroplis, Austrotrillina tests is the indicator of depth lower than 30m. This is formed throughout Late Rupelian and Chattian in the Shool, Noorabad, and Darengoon sections. The end Chattian sea level falling controls the formation of the association no. 3 in these sections. This is resulted in the deposition of the clastic and evaporate sediments of the Razak and Gachsaran formations over the Asmari Formation.

Keywords

Main Subjects


آقانباتی، ع.،1383، زمین‌شناسی ایران. سازمان زمین‌شناسی و اکتشافات معدنی کشور، 586ص.
کلنات، ب.، ح. وزیری مقدم و ع. طاهری، 1389، زیست چینه‌نگاری و پالئواکولوژی سازند آسماری در جنوب غرب فیروز آباد: رخساره‌های رسوبی، شماره3 (1)، ص71 -84.
مطیعی، ه.، 1382، زمین‌شناسی ایران، چینه‌شناسی زاگرس، سازمان زمین‌شناسی و اکتشافات معدنی کشور، 583ص.
Adams, T.D., and F. Bourgeois, 1967, Asmari biostratigraphy: Iranian Oil Operating Companies. Geological and Exploration Division, Rep. No. 1074p.
Adams, C.G., 1984, Neogene larger foraminifera, evolutionary and geological events in the context of datum planes. In: Ikebe, I., Tsuchi, R., (Eds.), Pacific Neogene datum planes: University of Tokyo Press, Tokyo, p. 47–67.
Afaghi, A., and M.M. Salek, 1977, Geological map of Iran, Scale 1:1000000: National Iranian Oil Company
Alavi, M., 2004, Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution: Am J. v. 304, p. 1-20.
Agard, P. J., J. J. Omrani, and F. Mouthereau, 2005, Convergence history across Zagros (Iran): constraints from collisional and earlier deformation: Int J Earth Scie (Geol Rundsch), v. 94, p. 401–419.
Allahkarampoor-Dill, M., A. Seyrafian, and H. Vaziri-Moghaddam, 2010, The Asmari Formation, north of the Gachsaran (Dill anticline), southwest Iran: facies analysis, depositional environments and sequence stratigraphy: Carbonates evaporites, v. 25, p. 145-160.
Barattolo, F., D. Bassi, and R. Romero, 2007, Upper Eocene larger foraminiferal-coralline algal facies from the Klokova Mountain (south continental Greece): Facies, v. 53, p. 361–375.
Bassi, D., L. Hottinger, and H. Nebelsick, 2007, Larger Foraminifera from the Upper Oligocene of the Venetian area, northeast Italy: Palaeontology, v. 5(4), p. 845-868.
Bassi, D., J. H. Nebelsick, A. Puga-Bernabéu, and V. Luciani, 2013, Middle Eocene Nummulites and their offshore re-deposition: A case study from the Middle Eocene of the Venetian area, northeastern Italy: Sedimentary Geology,v. 297, p.1–15.
Beavington-Penney, S.J., and A. Racey, 2004, Ecology of extant nummulitids and other larger benthic foraminifera, applications in Paleoenvironmental analysis: E Sci Rev, v. 67 (3-4), p.219-265.
Brandano, M., and L. Corda, 2002, Nutrients, See level and tectonic: Constrain for the facies architecture of Miocene carbonate ramp in central Italy: Blackwell science, v. 4, p. 257-262.
Brandano, M., V. Frezza, L. Tomassetti, and M. Cuffaro, 2009, Heterozoan carbonates in oligotrophic tropical waters: the Attard member of the lower coralline limestone formation (Upper Oligocene, Malta):  Palaeogeography, Palaeoclimatology, Palaeoecology, v. 274, p. 54–63.
BouDagher-Fadel, M., 2008, The Cenozoic larger benthic foraminifera: the Palaeogene. In: Developments in palaeontology and stratigraphy, Elsevier, Amsterdam, v. 21.
BouDagher-Fadel, M., and G.D. Price, 2014, The phylogenetic and palaeogeographic evolution of the nummulitoid larger benthic foraminifera: Micropaleontology, v. 60(6), p. 483–508.
Busk H.G., and H.T., Mayo, 1918, Some notes on the geology of the Persian oil fields: J Inst Pet Technol,  v. 17(5), p. 26.
Cahuzac, B., A. Poignant, 1997, Essai de biozonation de l’Oligo-Miocène dans les bassins européens à l’aide des grands foraminifers néritiques: Bullet Soc Géol de  France, v. 168( 2), p. 155-169.
Cosovic, V., K. Drobne, and A. Moro, 2004, Paleoenvironmental model for Eocene foraminiferal limestones of the Adriatic carbonate platform (Istrian Peninsula): Facies, v. 50, p. 61–75.
Ehrenberg, S.N., N.A.H. Pickard, G.V. Laursen, S. Monibi, Z.K. Mossadegh, T.A. Svånå, A.A.M. Aqrawi, J.M. McArthur, and M.F. Thirlwall, 2007, Strontium isotope stratigraphy of the Asmari Formation (Oligocene–Lower Miocene), SW Iran: J Pet Geol., v. 30, p.107–128.
Ellis, A.C., H.M. Kerr, C.P. Cornwell, and D.O. Williams, 1996, A tectono-stratigraphic framework forYemen and its implication for hydrocarbon potential: Petroleum Geosciences, v. 2, p. 29–42.
Flügel, E., 2004, Microfacies of carbonate rocks; analysis, interpretation and application: Ber Spr Ver. 976 p.
Geel, T., 2000, Recognition of Stratigraphic sequence in carbonate platform and slope deposits: empirical models based on microfacies analyses of palaeogene deposits in southeastern Spain: Palaeogeogr Palaeoclimat Palaeoecol, v. 155 (3), p. 211-238.
Goff , J.C., R.W. Jones, and A.D. Horbury, 1995, Cenozoic basin evolution of the northern part of theArabian Plate and its control on hydrocarbon habitat. In: Al-Husseini M.I. (Ed.). Middle East Petroleum Geosciences Geo’94: Gulf PetroLink, Bahrain, v. 1, p. 402–412.
Habibi, T., H. Mashaiekh, N. Haghighat and S. Jangani, 2014, Biostratigraphy of the Asmari Formation at Shool and Darengoon sections, Fars Province: 32nd National and 1st International Geosciences Congress.
Hallock, P. and E.C. Glenn, 1986, Larger foraminifera: a tool for paleoenvironmental analysis of Cenozoic depositional facies: Palaios, v. 1(1), p. 55–64.
Hohenegger, J., 2005, The importance of symbiont-bearing benthic foraminifera for West Pacific carbonate beach environments: Marine Micropaleontology, v. 61, p. 4–39.
Hottinger, L., 1997, Shallowbenthic foraminiferal assemblages as signals for depth of their deposition and their limitations: Bull. Soc. Géol. Fr., v. 168, p. 491–505.
Hottinger, L., 2000, Functional morphology of benthic foraminiferal shells, envelopes of cells beyond measure: Micropaleontology, v. 46 (supplement 1), p. 57-86.
Hughes Clarke, M.W., 1988, Stratigraphy and rock unit nomenclature in the oil producing area of interior Oman: Journal of Petroleum Geology, v. 11, p. 5–59.
James G. A., and J.G. Wynd, 1965, Stratigraphic nomenclature of Iranian oil consortium agreement area: American Assocciation of  Petroleum  Geologists Bulletine, v. 49, p. 2182–2245.
Jones, R.W., and A. Racey 1994, Cenozoic stratigraphy of the Arabian Peninsula and Gulf. In: Simmons (Ed.), Micropaleontology and hydrocarbon exploration in the middle east: Chapman and Hall, p. 273-303.
Lee, J.J., 1990, Fine structure of rodophycean profyridium purpureum insitu in Peneroplis pertusus and P. asicularis: J. Foramin, Res.,v. 20, p. 162-169.
Laursen, G.V., S., T.L. Monibi, N.A. Allan, A. Pickard, B. Hosseiney, Y. Vincent, F.S.P. Hamon, A. Van-Buchem, G. Moallemi, and Druillion, 2009, The Asmari Formation revisited: changed stratigraphic allocation and new biozonation: First International Petroleum Conference & Exhibition, Shiraz, Iran.
Mossadegh , Z.K., D.W. Haig, T. Allan, M.H. Adabi, and A. Sadeghi, 2009, Salinity changes during Late  Oligocene to Early Miocene Asmari Formation deposition, Zagros Mountains, Iran: Palaeogeography Palaeoclimatology Palaeoecology, v. 272, p. 17–36.
Murray, J.W. 1991, Ecology and palaeoecology of benthic foraminifera: Longman Scientific and Technical, New York.
Murray, J.W., 2006,Ecology and Applications of Benthic Foraminifera: Cambridge University Press, 426p.
Less, G., and E. Ozcan, 2012, Bartonian-Priabonian larger benthic foraminiferal events in the Western Tethys: Austrian Journal of Earth Sciences, v. 105(1), p. 129-140.
Nebelsick, J.H., V. Syingl, and M. Rasser, 2001, Autochthonous facies and allochthonous debris Xows compared: Early Oligocene carbonates facies patterns of the Lower Inn Valley (Tyrol, Austria): Facies, v. 44, p. 31–45.
Pomar, L., 2001a, Ecological control of sedimentary accommodation: evolution from a carbonate ramp torimmed shelf, Upper Miocene, Balearic Islands: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 75, p. 249–272.
Pomar, L., 2001b, Types of carbonate platforms: a genetic approach: Basin Research, v. 13, p. 313–334.
Pomar, L., G. Mateu-Vicens, M. Morsilli, and M. Brandano, 2014, Carbonate ramp evolution during the Late Oligocene (Chattian), Salento Peninsula, southern Italy: Palaeogeography Palaeoclimatology Palaeoecology, v. 404, p.109–132.
Racey, A., 1995, Palaeoenvironmental significance of larger foraminiferal biofabrics from the middle Eocene seeb limestone formation of Oman: implications for petroleum exploration. In: Al-Husseini, M.I., (Ed.) Middle East petroleum geosciences conference: GEO’94, v. 2. Gulf Petrolink, Bahrain, p. 793–810.
Rasser, M.W., and J.H., Nebelsick, 2003, Provenance analysis of Oligocene autochthonous and allochthonous coralline algae a quantitative approach towards reconstructing transported assemblages: Palaeogeography Palaeoclimatology Palaeoecology, v. 201, p. 89–111.
Reiss, Z., and L. Hottinger, 1984, The Gulf of Aqaba: Ecological Micropaleontology: Ecological Studies, v. 50. Springer-Verlag, Berlin. 35 pp.
Sadeghi, R., H. Vaziri-Moghaddam and A. Taheri, 2009, Biostratigraphy and paleoecology of the Oligo-Miocene succession in Fars and Khuzestan areas (Zagros Basin, SW Iran): Historical Biology, p.17-31.
Sadeghi, R., H. Vaziri-Moghaddam, and A. Taheri, 2011, Microfacies and sedimentary environment of the Oligocene sequence (Asmari Formation) in Fars sub-basin, Zagros Mountains, southwest Iran: Facies, v. 57, p. 431–446.
Seyrafian, A., 2000, Microfacies and depositional environments of Asmari Formation at Dehdez area (a correlation across Central Zagros Basin: Carbonates Evaporites, v. 15, p. 22–48.
Seyrarafian, A., and A. Hamedani, 2003, Microfacies and paleoenvironmental interpretation of the Lower Asmari Formation (Oligocene), North-Central Zagros Basin, Iran: N Jb Geol Palaontol Mh., v. 3, p.164–167.
Seyrafian, A., A.R. Mojikhalifeh, 2005, Biostratigraphy of the Late Paleogene-Early Neogene succession, north-central border of Persian Gulf: Carbonates and Evaporites, v. 20 (1), p. 91-97.
Seyrafian, A., H. Vaziri-Moghaddam, N. Arzani, and A. Taheri, 2011, Facies analysis of the Asmari Formation in central and north central High Zagros: Biostratigraphy, paleoecology and diagenesis: Rivista Mexicana de ciencias geologicas, v. 28(3), p. 439-458.
Sooltanian, N., A. Seyrafian, and H. Vaziri-Moghaddam, 2011, Biostratigraphy and paleo-ecological implications in microfacies of the Asmari Formation (Oligocene), Naura anticline (Interior Fars of the Zagros Basin), Iran: Carbonates Evaporites, v. 26, p. 167–180.
Shabafrooz, R., A. Mahboobi, H. Vaziri-Moghaddam, R. Moussavi-Harami, A. Ghabeishavi, and I. Al-Asam, 2015, Facies analysis and carbonate ramp evolution of Oligo-Miocene Asmari Formation in the Gachsaran and Bibi-Hakimeh oilfields and the nearby Mish anticline, Zagros Basin, Iran: N. Jb. Geol. Paleont. Abn.
Sharland, P.R., R. Archer, D.M. Casey, R.B. Davies, S.H. Hall, A.P. Heward, A.D. Horbury, and M.D. Simmons, 2001, Arabian Plate sequence stratigraphy: GeoArabia Special Publication 2, Gulf PetroLink, Bahrain, 371 p., with 3 charts.
Sharland, P.R., D.M. Casey, R. B. Davies, M.D. Simmons, and O.E. Sutcliffe, 2004, Arabian plate sequence straigraphy , revisions to SP2: GeoArabia, v. 9, p. 199–214.
Thomas, A.N., 1950, The Asmari Limestone of south-west Iran. In: Hobson, G.D.,(Ed.), The Geology of Petroleum :IGC Publication, p. 35-44.
Van Buchem, F.S.P., T.L. Allan, G.V. Laursen, M. Lotfpour, A. Moallemi, S. Monibi, H. Motiei, N.A.H. Pickard, A.R. Tahmasbi, V. Vedrenne, and B. Vincent, 2010, Regional stratigraphic architecture and reservoir types of the Oligo-Miocene deposits in the Dezful Embayment (Asmari and Pabdeh Formations) SW Iran: Geol Soc Lond Spec Publ., v. 329, p. 219–263.
Vaziri-Moghaddam, H., M. Kimiagari, and A. Taheri, 2006, Depositional environment and sequence stratigraphy of the Oligo-Miocene Asmari Formation in SW Iran: Facies, v. 52, p. 41–51.
Vaziri-Moghaddam, H., A. Seyrafian, A. Taheri, and H. Motiei, 2010, Oligocene-Miocene ramp system (Asmari Formation) in the NW of the Zagros basin, Iran: Microfacies, paleoenvironment and depositional sequence: Revista Mexicana de Ciencias Geológicas, v. 27(1), p. 56-71.
Wynd, J., 1965, Biofacies of Iranian Oil Consortium Agreement Area: Iranian Oil Offshore Company, Report 1082 [Unpublished].