اثر رخساره ها و اهمیت محیطی اثر فسیل ها در سازند آیتامیرحوضه کپه داغ

نویسندگان

1 کارشناس ارشد، دانشگاه فردوسی مشهد

2 دانشجوی دکتری، دانشگاه فردوسی مشهد

3 دانشیار، گروه زمین شناسی دانشگاه فردوسی مشهد

4 استاد، گروه زمین شناسی دانشگاه فردوسی مشهد

چکیده

        سازند آیتامیر (آلبین- سنومانین) در حوضه رسوبی کپه داغ در شمال خاوری ایران گسترش دارد. این سازند عمدتا از ماسه سنگ، شیل، سیلتستون و چند افق کربناته تشکیل شده است. در رسوبات سیلیسی آواری سازند آیتامیر، کاهش محسوسی در میزان آشفتگی زیستی در طبقات گلی در مقایسه با طبقات ماسه سنگی مشاهده می شود. بر اساس مطالعه اثرفسیل های این سازند، تعداد نه اثر فسیلی شامل Thalassinoides suevicus ، Thalassinoides isp. (اثر رخساره گلوسی فانجیتس)، Ophiomorpha nodosa ، Palaeophycus tubularis و Skolithos isp. (اثر رخساره اسکولایتوس) و Thalassinoides isp. ، Planolites isp. ، Chondrites isp. ، Cylindrichnous concentricus ، Teichichnus isp. ، Palaeophycus tubularis و Ophiomorpha nodosa (اثر رخساره کروزیانا) در لایه های ماسه سنگ، سیلتستونی و کربناته تشخیص داده شدند. اثر رخساره اسکولایتوس در شرایط با انرژی بالاتر نسبت به اثر رخساره گلوسی فانجیتس و اثر رخساره کروزیانا تشکیل شده است. اثر رخساره اسکولایتوس با تنوع کم اثر فسیل ها و حضور اسکولایتوس و افیومورفاهای عمودی تا مایل با کف بستر ماسه ای با جورشدگی خوب همراه با طبقات مورب تراف و پشته ای نشانگر مجموعه محیط سدی با شرایط نسبتا پر انرژی است . در صورتیکه اثر رخساره کروزیانا و اثر رخساره گلوسی فانجیتس با تنوع بیشتر اثر فسیل ها عمدتا افقی تا کمی مایل و کف بستر ماسه ای با جورشدگی متوسط و ضعیف در شرایط کم انرژی تر در محدوده حاشیه ساحلی ( Shoreface ) تشکیل گردیده است. شواهد رسوبی و مطالعه اثر رخساره ها در توالی قائم حاکی از آن است که رسوبات ماسه سنگی بخش ابتدایی سازند آیتامیر در محیط سدی و رسوبات ماسه سنگی بخش های بالایی در محیط حاشیه ساحلی ته نشست پیدا کرده اند.   

کلیدواژه‌ها


عنوان مقاله [English]

Ichnofacies and environmental significance of trace fossils in Aitamir Formation, Kopet – Dagh Basin

نویسندگان [English]

  • M. Ashuri 1
  • M Sharafi 2
  • A. Mahboubi 3
  • R Moussavi- Harami 4
1 M. Sc. Ferdowsi University of Mashhad
2 Ph. D. Student, Ferdowsi University of Mashhad
3 Associate Professor, Department of Geology, Ferdowsi University of Mashhad
4 Professor, Department of Geology, Ferdowsi University of Mashhad
چکیده [English]

  Aitamir Formation (Albian-Cenomanian) crops out in the Kopet-Dagh basin in north-east Iran. It is mainly composed of sandstone, shale, siltstone, and several carbonate beds. In siliciclastic sediments of the Aitamir Formation, mud beds show a significant decrease in bioturbations with respect to sandstone beds. Based on ichnofossils studies, nine trace fossils were identified in sandstone, siltstone and carbonate beds which include of Thalassinoides suevicus and Thalassinoides isp. (Glossifungites ichnofacies), Ophiomorpha nodosa , Palaeophycus tubularis, Skolithos isp. (Skolithos ichnofacies) and Thalassinoides isp., Planolites isp., Cylindrichnous concentricus, Chondrites isp., Ophiomorpha nodosa , Palaeophycus tubularis and Teichichnus isp. (Cruziana ichnofacies). Skolithos ichnofacies formed in high energy condition with respect to Cruziana ichnofacies and Glossifungites ichnofacies. Skolithos ichnofacies with low diversity, Skolithos isp. and vertical orientation Ophiomorpha present in well sorted and trough- hummocky cross bedded sandy substrate. This ichnofacies indicates of high energy barrier complex. Whereas Cruziana ichnofacies and Glossifungites ichnofacies with higher diversity and mainly horizontal to slightly oblique, trace fossils in sandy substrate with moderate sorting are formed in low energy condition in shoreface environment. Sedimentary evidences and investigated ichnofacies in vertical succession show that sandstones in the lower portion of the Aitamir Formation formed in barrier complex and sandstones sediment in upper portion deposited in shoreface environments.

کلیدواژه‌ها [English]

  • Keywords: Aitamir
  • Ichnofacies
  • Glossifungites
  • Skolithos
  • Cruziana
منابع                                                                                                                 
1- افشار حرب، ع. 1373، زمین شناسی کپه داغ. انتشارات سازمان زمین شناسی کشور، طرح تدوین کتاب، 275 ص.
2-  عاشوری، م.، 1389، چینه نگاری سکانسی و تفسیر تاریخچه رسوب گذاری سازند آیتامیر در جنوب شرق درگز، انتشارات دانشگاه فردوسی مشهد، 252 ص.
3- عاشوری، م.، م.، شرفی، ا.، محبوبی، ر.، موسوی حرمی، م.، نجفی، 1388، بررسی خاستگاه و مکانیزم تشکیل گلاکونی های سازند آیتامیر در جنوب شرق درگز،  مجموعه مقالات هفدهمین همایش انجمن بلور شناسی و کانی شناسی ایران، دانشگاه بوعلی سینا، همدان، 210 ص.                                             
4- Aguirre, J., J.M. de., Gibert and A., Puga-Bernabéu, 2010, Proximal–distal ichnofabric changes in a siliciclastic shelf, Early Pliocene, Guadalquivir Basin, southwest Spain: Palaeogeography, Palaeoclimatology, Palaeoecology,v. 291, p. 328–337.
5- Alavi, M., H., Vaziri, K., Seyed-Emami and Y., Lasemi, 1997, The Triassic and associated rocks of the Nakhlak and Aghdarband areas in central and northeastern Iran as remnants of the southern Turanian active continental margin: Geological Society America Bulletin v. 109, p.1563–1575.
6- Amorosi, A., 1997, Detecting compositional, spatial and temporal attributes of glaucony: a tool for provenance research: Sedimentary Geology, v. 109, p. 135–153.
7- Billings, E., 1862, New species of fossils from different parts of the Lower, Middle and Upper Silurian rocks of Canada. In: Palaeozoic Fossils, Geological Survey of Canada, Dawson Brothers, Montreal, v. 1, p. 96–168.
8-  Bromley, R.G., 1996, Trace fossils, Biology, Taphonomy and Applications Second Edition. Chapman and Hall, London. 361 p.
9- Bromley, R.G. and A.A., Ekdale, 1984, Chondrites: A trace fossil indicator of anoxia in sediments: Science, v. 224, p. 872-874.
10- Buatois, L.A., M.G., Ma´ngano, A., Alissa, and T.R., Carr, 2002, Sequence stratigraphic and sedimentologic significance of biogenic structures from a late Paleozoic marginal- to open-marine reservoir, Morrow Sandstone, subsurface of southwest Kansas, USA: Sedimentary Geology, v. 152, p. 99–132.
11- Catuneanu, O., 2006, Principles of Sequence Stratigraphy, Department of Earth and university of Alberta, Edmonton, Alberta, Canada, 375 p.
12- Chafetz, H.S., 2007, Paragenesis of the Morgan Creek Limestone, Late Cambrian, central Texas: Constraints on the formation of glauconite: Deep-Sea Research II, v. 54, p. 1350–1363.
13- Chang, S.S., Y.H., Shau M.K., Wang, C.T., Ku  and P.N., Chiang, 2008, Mineralogy and occurrence of glauconite in central Taiwan: Applied Clay Science, v. 42, p. 74-80.
14- Crimes, T.P., M.A., Fedonkin, 1994, Evolution and dispersal of deep-sea traces: Palaios, v. 9, p. 74-83.
15- Ekdale, A.A., R.G., Bromley and S.G., Pemberton, 1984, Ichnology: the use of trace fossils in sedimentology and stratigraphy. ociety of Economic Geologists and Paleontologists, Short Courses, v. 15, p. 1–317.
16- Fillion, D., and R.K., Pickerill, 1990, Ichnology of the Upper Cambrian? to Lower Ordovician Bell Island and Wabana groups of eastern Newfoundland, Canada: Palaeontographica Canadaiana, v. 7, 119p.
17- Frey, R.W., and G.S., Pemberton, 1985, Biogenic structures in outcrops and cores. I. Approach to ichnology: Bulletin of the. Canadian Petroleum Geology, v. 33, p. 72–115.
18- Frey, R.W., S.G., Pemberton and T.D.A., Saunders, 1990, Ichnofacies and bathymetry: a passive relationship: Journal. Paleontology, v. 54,  p. 155–158.
19- Fuchs, T., 1909, Über einige neuere Arbeiten zur Aufklärung der Natur der Alectoruriden. Mitteilungen der Geologischen Gesellschaft in Wien, v. 2, p. 335–350.
20- Fürsich, F.T., 1974, Corallian (Upper Jurassic) trace fossils from England and Normandy. Stuttg. Beitr. Naturkd., Ser. B (Geol. Palaont.) v. 13, p. 1– 51.
21- Fürsich, F.T., 1998; Environmental distribution of trace fossils in the Jurassic of Kachchh (western India). Facies , v. 39, p. 243-272.
22- Fürsich, F.T., and W., Oschmann, 1993, Shell beds as tool in facies analysis: The Jurassic of Kachchh, western India. J Geol Soc Lond, v. 150, p. 169–185.
23- Fürsich, F.T.,  M., Wilmsen and K., Seyed-Emami, 2006, Ichnology of Lower Jurassic beach deposits in the Shemshak Formation at Shahmirzad, southeastern Alborz Mountains, Iran. Facies, v. 52, p. 599–610.
24- Gibert, J.M. de., R. G., Netto, F. M.W., Tognoli, M. E.,Grangeiro, 2006, Commensal worm traces and possible juvenile thalassinidean burrows associated with Ophiomorpha nodosa, Pleistocene, southern Brazil: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 230, p. 70– 84.
25- Gingras, M.K., S.G., Pemberton and T.D.A., Saunders, 2001, Bathymetry, sediment texture, and substrate cohesiveness: their impact on Glossifungites trace assemblages at Willapa Bay, Washington: Palaeogeography, Palaeoclimatology, and Palaeoecology, v. 169, p. 1-21.
26- Goldring, R., 1996, The sedimentological significance of concentrically laminated burrows from Lower Cretaceous Ca-bentonites, Oxfordshire: Journal of the Geological Society (London), v. 153, p. 255–263.
27- Hantzschel, W., 1975, Treatise on Invertebrate Paleontology. Part W. Trace Fossil and Problematica. Geological Society of America and University of Kansas Press, Lawrence, KA, 269 p.
28- Howard, J.D., 1966, Characteristic trace fossils in Upper Cretaceous sandstones of the Book Cliffs and Wasatch Plateau, Utah: Bulletin of the Geological and Mineralogical Survey, v. 80, p. 35–53.
29- Kennedy, W.J., 1970, Trace fossils in the Chalk environment. Geological Journal Special Issue 3. Seel House Press, Liverpool, p. 263–282.
30- Keighley, D.G.,  and R.K., Pickerill, 1995, The ichnotaxa Palaeophycus and Planolites: historical perspectives and recommendations. Ichnos, v. 3, p. 301–309.
31- Kim, J.Y., K. S., Kim, R.K., Pickerill, 2003, Cretaceous nonmarine trace fossils from the Hasandong and Jinju Formations of the Namhae area,  Kyongsangnamdo, Southeast Korea. Ichnos, v. 9, p. 41–60.
32- MacEachern, J.A., S.G., Pemberton, M.G., Gingras, K.L., Bann, L.T., Dafoe, 2007, Uses of trace fossils in genetic stratigraphy. In: Miller III, W. (Ed.), Trace Fossils: Concepts, problems, prospects. Elsevier, Amsterdam, p. 110–134.
33- Malpas, J.A., R.L., Gawthorpe, J.E.,  Pollard and I.R., Sharp, 2005, Ichnofabric analysis of the shallow marine Nukhul Formation (Miocene), Suez Rift, Egypt: implications for depositional processes and sequence  stratigraphic evolution: Palaeogeography, Palaeoclimatology,Palaeoecology, v. 215, p. 239– 264.
34- Moghadam H. V., C. R., Paul,  2000, Trace fossils of the Jurassic, blue Lias, Lyme Regis: Southern England, Ichnos;v. 7, p. 283-306.
35- Neto de Carvalho, C., P.A., Viegas, M., Cachao, 2007, Thalassinoides and its producer: Populations of Mecochirus buried within their burrow systems, Boca du Chapim Formation (lower Cretaceous), Portugal. Palaios, v. 22,  p. 104–109.
36- Pedersen, G.K., and R.G., Bromley, 2006, Ophiomorpha irregulaire, rare trace fossil in shallow marine sandstones, Cretaceous Atane Formation, West Greenland: Cretaceous Research, v. 27, p. 964-972.
37- Pemberton, S.G., R.W., Frey, 1982, Trace fossil nomenclature and the Planolites– Palaeophycus dilemma: Journal of Palaeontology, v. 56,  p. 843–881.
38- Pemberton, S.G., J.A., MacEachern, R.W., Frey, 1992, Trace fossil facies models: environmental and allostratigraphic significance, in R.G. Walker and N. James, Eds., Facies Models: Response to Sea Level Change. Geological Association of Canada, p. 47-72.
39- Pemberton, S.G., J.A., MacEachern, 1995, The sequence stratigraphic significance of trace fossils: examples from the Cretaceous foreland basin of Alberta, Canada: American Association of Petroleum Geologists., Memoir, v. 64, p. 429-475.
40- Pemberton, G.S., M., Spila, A.J., Pulham, T., Saunders, J.A., MacEachern, D., Robbins and I.K., Sinclair, 2001, Ichnology and Sedimentology of Shallow to Marginal marine Systems: Ben Nevis and Avalon Reservoirs, Jeanne D’Arc Basin. Short Course Notes- Geological Association of Canada 15, 343 pp.
41- Seilacher, A., 1967, Bathymetry of trace fossils. Marine Geology, v. 5, p. 413–428.
42- Seilacher, A., 2006, Trace Fossil Analysis, Springer, 225p.
43- Taylor, A.M., and R., Goldring, 1993, Description and analysis of bioturbation and ichnofabric: Journal of the Geological Society (London) , v. 150, p. 141–148.
44- Tchoumatchenco P., and A. Uchman 2001, The oldest deep-sea Ophiomorpha and Scolicia and associated trace fossils from the Upper Jurassic–Lower Cretaceous deep-water turbidite deposits of SW Bulgaria: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 169, p.85–99
45- Uchman, A., 2001, Eocene flysch trace fossils from the Hecho Group of the Pyrenees, northern Spain: Beringeria, v. 28, p. 3 – 41.
46- Uchman, A., H.G., Krenmayr, 2004, Trace Fossils, ihnofabrics and sedimentary facies in the shallow marine Lower Miocene Molasse of Upper Austria, Jb. Geology., p. 233-251.
47- Uroza, C.A., R.J., Steel, 2008,  A highstand shelf-margin delta system from the Eocene of West Spitsbergen, Norway, Sedimentary Geology, v. 203, p. 229-245.
48- von Sternberg, G.K., 1833, Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt. C.E. Brenk, Regensburg.
48- Swinbanks, D.D.,  and Y., Shirayama, 1984, Burrow stratigraphy in relation to manganese diagenesis in modern deep-sea carbonates. Deep-Sea Research, v. 31, p. 1197–1223.
49- Wanke, H., A., Wanke, 2007, Lithostratigraphy of the Kalahari Group northeastern Nambia, Journal of African Earth Sciences, v. 48, p. 314-328.   
50- Yang, B.C., R.W., Dalrymple, M.K., Gingras and S.G., Pemberton, 2009, Autogenic occurrence of Glossifungites Ichnofacies: Examples from wave-dominated, macrotidal flats, southwestern coast of Korea: Marine Geology, 260, p.1–5.  
51- Zonneveld, J.-P., G.S., Pemberton, T.D.A., Saunders and R., Pickerill, 2002, Large, robust Cruziana from the Middle Triassic of northeastern British Columbia, Ethologic, biostratigraphic, and paleobiologic significance: Palaios, v. 17, p. 435– 448.