عوامل کنترل کننده خصوصیات مخزنی رخساره‌های اوئیدی و مادستونی سازند کنگان در میدان پارس جنوبی

نویسندگان

1 کارشناس ارشد، دانشگاه تهران

2 استاد، گروه زمین شناسی، دانشگاه تهران

چکیده

 سازندکنگان (تریاس پیشین) به همراه سازند دالان بالایی مهمترین سنگ مخزن گای ایران را تشکیل میدهند. بررسی رخساره­های موجود در سازند کنگان نشان می­دهد که بطور کلی دو نوع رخساره­ی اوئیدی-گرینستونی و مادستونی-دولومادستونی بیش از 75 درصد از رخساره­های این سازند را تشکیل می­دهند. بنابراین شناسایی فرایندهای کنترل کننده کیفیت مخزنی در این رخساره­ها می­تواند کمک زیادی در پیش‌بینی توزیع خصوصیات مخزنی سازند داشته باشد. در این مطالعه، ابتدا رخساره­های میکروسکوپی و محیط­رسوبی این دو گروه رخساره­ای شناسایی شده و سپس تاثیر فرایندهای مختلف رسوبی و دیاژنزی کیفیت مخزنی رخساره­ها با رسم نمودارهای تخلخل-تراوایی توضیح داده شده است.نتایج حاصله نشان می­دهد که بهترین زون­های مخزنی از رخساره­های دانه­غالب تشکیل شده­اند و انحلال آلوکم­ها در این رخساره­ها و نیز دولومیتی شدن باعث افزایش خصوصیات مخزنی سازند کنگان شده است. در حالی که سیمانی شدن کلسیتی، انیدریتی شدن و تراکم سبب کاهش کیفیت مخزنی شده­اند.

کلیدواژه‌ها


عنوان مقاله [English]

Reservoir properties controlling on ooidal and mudstone facies in Kangan Formation, South Pars Gas Field

نویسندگان [English]

  • Gh.R Hosseinyar 1
  • H Rahimpour-Bonab 2
1 M.Sc. University of Tehran
2 Professor, Department of Geology, University of Tehran
چکیده [English]

The Kangan (Early Triasic) and Upper Dalan (Late Permian) formations form the important gas reservoirs in Iran. The ooidal grainstone and mudstone facies form more than of 75 percent of Kangan Formation. Therefore, recognition of controlling processes of reservoir properties on these facies lead to understand the reservoir quality on whole formation. In this study, based on recognition of microfacies and depositional environments, petrophysical properties of Kangan Formation are investigated. Results show that the grain-dominated facies have better reservoir quality, and dissolution of allochems on these facies (grain dominated), dolomitization and fracturing caused to increasing reservoir properties. However, calcite cementation, anhydritization and compaction decreased the reservoir quality.
 


کلیدواژه‌ها [English]

  • Sedimentary environments
  • Diagenesis
  • Reservoir quality
  • Kangan
  • South Pars
 
1-              حسین­یار، غ.، رحیم­پوربناب، ح.، 1388، ارزیابی کیفیت مخزنی رخساره­های رسوبی سازندهای دالان وکنگان در میدان پارس جنوبی: بیست و هشتمین گردهمایی علوم زمین، تهران، ایران.
2-                Alsharhan, A.S., and A.E.M. Narin, 1997, Sedimentary Basins and Petroleum Geology of the Middle East: Elsevier, Netherlands, 843 p.
3-               Angiolini, L., M. Balini, E. Garzanti, A. Nicora, A. Tintori, S. Crasquin and G. Muttoni, 2003, Permian climatic and paleogeographic changes in Northern Gondwana: the Khuff Formation of Interior Oman: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 191, nos. 3-4, p. 269-300.
4-               Burchette, T.P. and V.P. Wright, 1992, Carbonate ramp depositional systems: Sedimentary Geology, v. 79, p. 3–57.
5-               Buxton, M.W.N. and H.M. Pedley, 1989, A standardized model for Tethyan Tertiary carbonate ramps: Journal of the Geological Society of London, v. 146, p.746-748.
6-               Buyukutku, A. G., 2009, Reservoir properties of Karaisalı formation in the Adana Basin, Southern Turkey: Journal of Petroleum Science and Engineering, v. 65, Issues 1-2, p. 33-44
7-               Dickson, J. A. D., 1965, a modified staining technique in thin section: Nature, v. 205.
8-               Dunham, R. J. 1962, Classification of carbonate rocks according to depositional texture: AAPG Memoirl 1, p. 108-121.
9-               Ehrenberg, S.­N., P.­H. Nadeau and A.­A. M. Aqrawi, 2007, A comparison of Khuff and Arab reservoir potential throughout the Middle East: AAPG Bulletin,v. 86; p. 1709–1732.
10-           El-Tabakh, M., A. Mory, B.­C. Schreiber and  R. Yasin, 2004,  Anhydrite cements after dolomitization of shallow marine Silurian carbonates of the Gascoyne Platform, Southern Carnarvon Basin: Western Australia Sedimentary Geology, v. 164 , p. 75–87.
11-           Enos, P. and L. J. Sawatsky, 1981, Pore networks in Holocene carbonate sediments: J.Sediment. Petrol, v. 51, N. 3.
12-           Flugle, E., 2004, Microfacies of carbonate rocks, Analysis, interpretation and application: Springer, 976p.
13-           Insalaco, E., A. Virgone, B. Courme, J. Gaillot, M. Kamali, A. Moallemi, M. Lotfpour and S. Monibi, 2006, Upper Dalan Member and Kangan Formation between the Zagros Mountains and offshore Fars, Iran: Depositional system, biostratigraphy and stratigraphic architecture: GeoArabia, v.11; p.75– 176.
14-           Jones, G. D. and Y. Xiao, 2005, Dolomitization, anhydrite cementation, and porosity evolution in a reflux system: Insights from reactive transport models: AAPG Bulletin, v. 89, no. 5, p. 577–601.
15-           Kashfi, M.S. 2000, Greater Persian Gulf Permian–Triassic stratigraphic nomenclature requires study: Oil and Gas Journal, Tulsa, v. 6, p. 36- 44.
16-           Lucia, F. J. 1999, Carbonate reservoir characterization: Springer, Berlin, p.226
17-           Lucia, F. J. and R. P. Major, 1994, Porosity evolution through hypersaline reflux dolomitization, in B. Purser, M. Tucker, and D. Zenger, eds., Dolomites: International Association of Sedimentologists Special Publication, v. 21, p. 325–341.
18-           Lucia, F.J.  2004, Origin and petrophysics of dolostone pore space: Gical Society of London, Special Publications, v. 235, p.141-155.
19-           Lucia, F.J.  2007, carbonate reservoir characterization: Springer Verlag, Berlin Heidelberg.
20-           Machel, H.G.  2005, Investigations of burial diagenesis in carbonate hydrocarbon reservoir rocks: Geoscience Canada.
21-           Mazzullo S. J., 2004, Overview of Porosity Evolution in Carbonate Reservoirs: Kansas Geological Society Bulletin, v. 79, nos. 1 and 2.
22-           Moore, C. H.  2001, Carbonate reservoirs porosity evolution and diagenesis in a sequence stratigraphic framework: Amsterdam, Elsevier, 444 p.
23-           Rahimpour-Bonab, H., A.  Asadi-Eskandar and R. Sonei, 2009, Effect of the Permian-Triassic boundary on reservoir characterics of the South Pars gas field, Persian Gulf: Geol. J., v. 44, p. 341-364.
24-           Rahimpour-Bonab, H., 2007, A procedure for appraisal of a hydrocarbon reservoir continuity and quantification of its heterogeneity: Journal of Petroleum Science and Engineering, v. 58, p. 1–12.
25-           Rahimpour -Bonab, H., B. Esrafili-Dizaji and V. Tavakoli, 2010, Dolomitization and anhydrite precipitation in Permo-Triassic carbonates at the South Pars gas field, offshore Iran: controls on reservoir quality: Journal of Petroleum Geology,  v. 33 Issue 1, p. 43 – 66.
26-           Saller, A.H. and N. Henderson, 1998, Distribution of Porosity and Permeability in Platform Dolomites: Insight from the Permian of West Texas: AAPG Bulletin. v. 82, p.1528–1550.
27-           Sun, S. Q., 1995, Dolomite reservoirs: porosity evolution and reservoir characteristics: AAPG Bulletin, v. 79, p. 186–204.
28-           Tavakoli, V., H., Rahimpour-Bonab and B. Esrafili-Dizaji, 2011 Diagenetic controlled reservoir quality of South Pars gas field, an integrated approach: Comptes Rendus Geoscience. v. 343, p. 55-71.
29-           Vincent, B., L. Emmanuel, P. Houel, J.P.  Loreau, 2007, Geodynamic control on carbonate diagenesis: Petrographic and isotopic investigation of the Upper Jurassic formations of the Paris Basin (France): Sedimentary Geology, v. 197, p. 267–289.
30-           Warren, J., 2000, Dolomite, occurrence, evolution and economically important associations: Earth Science Reviews, v. 52, p. 1-81.
31-           Warren, J.K., 2006, Evaporites: Sediments, Resources and Hydrocarbons: Springer Verlag, Brunei, p.1035.
32-           Wilson, J.L., 1975, Carbonate facies in geologic history: Springer, 471p.
33-           Ziegler, M., 2001, Late Permian to Holocene Paleofacies Evolution of the Arabian Plate and Its Hydrocarbon Occurrences: GeoArabia, v. 6, no. 3, p. 445–50.