اعتبارسنجی و مقایسه دو روش شبکه عصبی مصنوعی و ΔLogR در ارزیابی محتوای ماده آلی سنگ‌های منشاء: مطالعه موردی از سازند پابده میدان نفتی مارون

نویسندگان

1 دانشیار گروه زمین‌شناسی دانشگاه شهید چمران اهواز

2 کارشناس ارشد زمین‌شناسی نفت، دانشگاه شهید چمران اهواز

3 کارشناس ارشد شرکت ملی مناطق نفت‌خیز جنوب

چکیده

 
سنگ‌های منشاء از چگالی کمتری نسبت به دیگر لایه‌ها برخوردار بوده و از طرفی سرعت عبور موج، تخلخل و مقاومت بیشتری را نشان می‌دهند. بنابراین می‌توان از نگاره‌های چاه‌پیمایی به­منظور شناسایی این سنگ‌ها و بعنوان شاخصی جهت تعیین توان هیدروکربنی آنها استفاده نمود. این مهم معمولاً بوسیله روش‌های هوشمند نظیر شبکه عصبی مصنوعی و ΔLogR انجام می‌گیرد. سنگ‌شناسی متغیر و وجود مقادیر گوناگون ماده آلی کل (TOC)، موجب شد تا سازند شیلی ـ آهکی پابده جهت اعتبارسنجی و مقایسه نتایج روش‌های نامبرده در زمینه سنجش TOC انتخاب گردد. آنالیز رگرسیونی نشان می‌دهد که انطباق نتایج شبکه عصبی با مقادیر پیرولیز راک­ایول (99%)، به­مراتب بهتر از انطباق نتایج روش ΔLogR (60%) است. محاسبه مجذور خطای میانگین (Mean Square Error) روش‌های یادشده نیز نتیجه فوق را آشکار نمود (استفاده بدلیل کارایی بالاتر MSE در نمایش خطای واقعی)، به‌طوریکه خطای MSE روش شبکه عصبی (07/0)، بسیار کمتر از روش ΔLogR (98/0) است. با افزایش محتوای ماده آلی و میزان رس نمونه­ها، کارایی روش ΔLogR نیز افزایش می‌یابد. در این مطالعه، MSE روش ΔLogR از سنگ‌شناسی شیلی به آهکی، به ترتیب از 27/0 به 41/1 افزایش می‌یابد. براساس نتایج شبکه، TOC در سازند پابده میدان مارون از 45/0 تا 4 درصد وزنی متغیر می­باشد. این سازند را از نظر میزان TOC می‌توان به سه بخش A و C، با مقادیر ماده آلی کمتر از 1% و B، با مقادیر ماده آلی بالاتر از 1% تقسیم نمود. ضخامت کل، میزان ماده آلی و درصد رس سازند در راستای جنوب­شرق میدان افزایش می‌یابد که این خود نشانگر افزایش عمق حوضه ته‌نشینی در این راستا می‌باشد. در­نهایت، با توجه به انطباق مرز بالایی لایه غنی از ماده آلی B با نوسانات شدید نگاره گاما، می‌توان این مرز را بعنوان شاخصی مناسب جهت شناسایی مرز ائوسن ـ الیگوسن و رخداد پیرنین به‌کار گرفت.
 

کلیدواژه‌ها


عنوان مقاله [English]

Validation and camparison of artificial neural network (ANN) and ΔLogR techniques in evaluating organic matter content of source rocks: Case study from Pabdeh Formation, Marun oilfield

نویسندگان [English]

  • B. Alizadeh 1
  • Kh Maaroofi 2
  • M.H. Heidarifard, 3
1 Associate Professor, Department of Geology, Shahid Chamran University
2 M.Sc., Department of Geology, Shahid Chamran University
3 M.Sc., National Iranian South Oil Company
چکیده [English]

Source rock intervals generally show a lower density, higher sonic transit time, higher porosity and higher resistivity than other sedimentary layers. Therefore wire-line logs have been used to identify source rocks and serve as an indicator for their potentiality. It is usually done using intelligent systems such as artificial neural network (ANN) and ΔLogR techniques. Shaly-lime Pabdeh Formation with variable lithology and TOC has been used to make a comparison between results of these techniques and evaluate their validity. Regression analysis shows that correlation of ANN results with Rock-Eval pyrolysis outputs (99%) is more appropriate than ΔLogR results (60%). Calculation of mean square error (MSE) for mentioned procedures (used because MSE method has a better efficiency to determine real error) is in accordance with the said result. Here the MSE of ANN method (0.07) is much lower than that of ΔLogR technique (0.98). With an increase in TOC and clay content, ΔLogR accuracy will be increased. In this study, MSE of ΔLogR technique has been increased from 0.27 to 1.4 from shale to limestone lithology. TOC content of this formation vary from 0.5 to 4 wt. % based on ANN results. Pabdeh Formation can be divided into three members: A and C with lower than 1% and B with higher than 1% total organic carbon (TOC) values. Increase in formation thickness, clay percentage and TOC content toward the south-east of oilfield demonstrate that paleo-sedimentary basin had been deeper in this direction. Finally, since rush undulation response of gama-ray log with top of B member, therefore, this top can be used as an indicator of Eocene-Oligocene boundary and Pyrenean orogeny.
 

کلیدواژه‌ها [English]

  • Total Organic Carbon
  • Pabdeh Formation
  • Marun Oilfield
  • artificial neural network
  • ΔLogR technique

 

1-         علیزاده، ب.، م. آدابی، و ف.، تژه، 1385، ارزیابی پتانسیل هیدروکربورزایی سنگ‌های منشاء احتمالی در میدان نفتی مارون با استفاده از دستگاه پیرولیز راک ـ ایول 6: مجله علوم دانشگاه تهران، پاییز 1385، ش. 3، ص. 274- 267.
2-         میرزا قلی­پور، ع. و ع.، حقی، 1369، مطالعه زمین شناسی میدان نفتی مارون: گزارش شماره پ-4210، اداره کل زمین­شناسی گسترشی، شرکت ملی مناطق نفتخیز جنوب، 55 ص.
3-                Abou Shagar, S., 2006, Source rock evaluation of some intervals in the Gulf of Suez: Egept. Agyptian Jornal of Aquatic Research, v. 32, p. 70-87.
4-                Al-Qahtani F. A., 2000, Porosity prediction using artificial neural network: MSc. Thesis, Morgautwn Virginia University.
5-                Beers, R.F., 1945, Radioactivity and organic content of some Paleozoic shales. AAPG Bulletin, v. 26, p. 1 – 22.
6-                Behar, F., V., Beaumont, and B., Pentea do, 2001, Rock-Eval 6 Technology: Performances and Developments, Oil & Gas Science and Technology-Rev. IFB, v. 56, no. 2, p.111-134.
7-                Bordenave, M.L., and R., Burwood, 1990, Source rock distribution and Maturation in the Zagros Orogenic Belt: Provenance of the Asmari and Bangestan reservoir oil accumulations: Organic Geochemistry, v. 16, 369 p.
8-                Callan R., 1999, The essence of neural networks: Southampton Institute. Prentice Hall Europe.
9-                Dellenbach, J., J., Espitalie, and F., Lebreton, 1983, Source Rock Logging: Transactions of 8th European SPWLA Symposium, paper D.
10-            Espitalie, J., G., Deroo, and F., Marquis, 1985, Rock Eval Pyrolysis and Its Application (Reprints): Institute Francais Du Petrol. Geologie, no. 207296, project B41 79008, 72 p.
11-            Fertle, H., 1988, Total organic carbon content determined from well logs: SPE Formation Evaluation 15612, p. 407– 419.
12-            James, G.A. and J.G., Wynd, 1965, Stratigraphic nomenclature of Iranian oil consortium agreement area: The American Association of Petroleum Geologists Bulletin, v. 49(12), p. 2182–2245.
13-            Haq, B.U., J., Hardenbol, and P.R. Vail, 1988, Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change In: (C. K. Wilgus, B. S. Hastings, C. G. St. C. Kendall, H. W. Posamentier, C. A. Ross and J. C. Van Wagoner, ( Eds.), Sea Level Changes–An Integrated Approach p. 71–108. SEPM Special Publication 42.
14-            Herron, S.L., 1988, Source rock evaluation using geochemical information from wireline logs and cores (abs): AAPG Bulletin, v. 72, 1007.
15-            Hertzog, R., Colson, L., Seeman, B., O’Brian, M., and H., Scott, 1989, Geochemical logging with spectrometry tools: SPE Formation Evaluation 4, p. 153– 162.
16-            Hunt, J.M., 1996. Petroleum Geochemistry and Geology: 2nd Edition, W.H. Freeman and Company, New York, 743 p.
17-            Hunt, J.M., and G.W., Jaieson, 1956, Oil and organic matter in source rock of petroleum: AAPG Bulletin, v. 40, p. 477– 488.
18-            Hussain, F.A., 1987, Source rock identification in the state of Kuwait using wireline logs: SPE 15747, p. 477– 488.
19-            Kamali, M.R., and A.A., Mirshabi, 2004, Total organic carbon content determined from well logs using ΔLogR and Neuro Fuzzy techniques: Journal of Petroleum Science and Engineering, v. 45, p. 141– 148.
20-            Langford, F.F., 1990, Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbon vs. total organic carbon: AAPG Bulletin, v. 74, p. 799– 804.
21-            Luffel, D.L., 1992, Evaluation of Devonian shale with new core and log analysis methods: SPE 21297, p. 1192–1197.
22-            Mendelson, J.D., and M.N., Toksoz, 1985, Source rock characterization using multivariate analysis of log data: Transactions of the Twenty-Sixth SPWLA Annual Logging Symposium, paper UU.
23-            Meyer, B.L., and M.H., Nederlof, 1984, Identification of source rocks on wireline logs by density/resistivity and sonic transit time/ resistivity cross plots: AAPG Bulletin, v. 68, 121– 129 p.
24-            Mohaghegh S., R., Arefi, H. I., Bilgesu, S., Ameri and D., Rose, 1994, Design and development of an artificial neural network for estimation of formation permeability: SPE 28237, Proceeding of SPE Petroleum Computer Conference, Dallas TX.
25-            Passey, Q. R., S., Creaney, J. B., Kulla, F. J., Moretti, and J. D., Stroud, 1990, A Practical Model for Organic Richness from Porosity and Resistivity logs: AAPG Bulletin, v.74, n.12, p. 1777-179.
26-            Peters, K.E., 1986, Guidelines for evaluating petroleum source rock using programmed pyrolysis: AAPG Bulletin, v. 70, p. 318– 329.
27-            Peters, K.E., and M.R., Cassa, 1994, Applied source rock geochemistry. In:: Magoon, L.B., . Dows, W.G (Eds.), The AAPG petroleum system - from source to trap Memoir 60, p. 93-117.
28-            Schlumberger, 1999, Welcome to the Petrophysics Distance Learning Module (CD).
29-            ‍‍Schmoker, J.W., 1981, Determination of organic-matter content of Appalachian Devonian shales from gamma-ray logs: AAPG Bulletin, v. 65, p. 2165–2174.
30-            Serra, O., 1986, Fundamentals of Well-Log Interpretation: The Acquisition Logging Data, v. 1, Elsevier. 679 p.
31-            Swanson, V.E., 1960, Oil yield and uranium content of black shales: USGS professional paper 356-A, p. 1–44.
32-            Tissot, B. and D. H., Welte, 1984, Petroleum Formation and Occurrence: Second Ed. Springer Verlag, Berlin.
33-            Trask, P. D., H. E. Hammar, and C. C. Wu., 1932, Origin and environment of source sediments of petroleum. Houston: Gulf Publis